QB365 Question Bank Software Study Materials

p - Block Elements - II Important 2 Marks Questions With Answers (Book Back and Creative)

12th Standard

Chemistry

Total Marks: 40

2 Marks

 $20 \times 2 = 40$

Explain why fluorine always exhibit an oxidation state of -1?

Answer: (i) Fluorine is most electronegative atom.

- (ii) It has only one unpaired electron.
- 2) Give the oxidation state of halogen in the following.
 - a) OF₂
 - b) O_2F_2
 - c) Cl_2O_3
 - d) I_2O_4

Answer: (a) OF_2

$$+2+2(x)=0$$

$$+2 = -2x$$

$$2 x = -2 \Rightarrow x = -1$$

(b)
$$O_2F_2$$

$$2(+1) + 2x = 0$$

$$2x = -2$$

$$x = -1$$

(c)
$$Cl_2O_3$$

$$2(x) + 3(-2) = 0$$

$$2x = +6$$

$$x = +3$$

(d)
$$I_2O_4$$

$$2(x) + 4(-2) = 0$$

$$2x = +8$$

$$x = +4$$

Give a reason to support that sulphuric acid is a dehydrating agent.

Answer:
$$C_{12}H_{22}O_{11} + H_2SO_4 \rightarrow 12C + H_2SO_4 \cdot 11H_2O$$

$$\mathbf{nswer}: \begin{array}{c} \mathbf{c}_{12} \mathbf{c}_{12} \mathbf{c}_{22} \mathbf{c}_{3} \\ \mathbf{c}_{3} \mathbf{c}_{3}$$

$$egin{aligned} ext{Sucrose} \ ext{HCOOH} + ext{H}_2 ext{SO}_4
ightarrow ext{CO} + ext{H}_2 ext{SO}_4 \cdot ext{H}_2 ext{O} \end{aligned}$$

$$(\mathrm{COOH})_2 + \mathrm{H_2SO_4}
ightarrow \mathrm{CO} + \mathrm{CO_2} + \mathrm{H_2SO_4} \cdot \mathrm{H_2O}$$

Give the uses of argon.

Answer: Argon prevents the oxidation of hot filament and prolongs the life in filament bulbs.

5) What happens when PCl₅ is heated?

Answer: On heating PCl₅, it decomposes into PCl₃ and chlorine.

$$\mathrm{PCl}_{5(|\mathrm{g})}
ightarrow \mathrm{PCl}_{3(|\mathrm{g})} + \mathrm{Cl}_{2(|\mathrm{g})}$$

6) Suggest a reason why HF is a weak acid, whereas binary acids of the all other halogens are strong acids.

Answer: HF is a weak acid i.e. 0.1 M solution is only 10% ionised, but in 5M & 15M solution, HF is stronger acid due to chemical equilibrium.

$$HF + H_2O \rightleftharpoons H_3O^+ + F^-$$

$$\mathrm{HF} + \mathrm{F}^-
ightleftharpoons \mathrm{HF}_2^-$$

7) Deduce the oxidation number of oxygen in hypofluorous acid – HOF. Oxidation number of F = -1

Oxidation number of H = +1

Oxidation number of O in HOF =x

$$(+1) + x + (-1) = 0$$

$$x = 0$$

Oxidation number of O in HOF = 0

What type of hybridisation occur in

- a) BrF₅
- b) BrF₃

Answer: a) BrF₅

Valence electron of bromine atom 7+ Number of fluorine atom (5) = 12

$$X = \frac{12}{2} = 6$$

Hybridization: sp^3d^2 ;

Geometry: Square Pyramidal

b) BrF₃

Valence electron of bromine atom 7+ Number of fluorine atom (3) = 10

$$X = \frac{10}{2} = 5$$

Hybridization: sp^3d^2 ;

Geometry: Triangular bipyramidal (T - shaped)

9) Complete the following reactions.

$$1.\mathrm{NaCl} + \mathrm{MnO}_2 + 4\mathrm{H}_2\mathrm{SO}_4 \longrightarrow$$

$$2.\mathrm{NaNO}_2 + \mathrm{HCl} \longrightarrow$$

$$3.P_4 + 3NaOH + 3H_2O \longrightarrow$$

$$4.\mathrm{AgNO}_3 + \mathrm{PH}_3 \longrightarrow$$

$$5.\mathrm{Mg} + 10\mathrm{HNO}_3 \longrightarrow$$

$$6.\mathrm{KClO}_3 \stackrel{\Delta}{\longrightarrow}$$

$$7.\mathrm{Cu} + Con. \; Hot \; \mathrm{H_2SO_4} \longrightarrow$$

$$8.\mathrm{Sb} + \mathrm{Cl}_2 \longrightarrow$$

$$9.\mathrm{HBr} + \mathrm{H_2SO_4} \longrightarrow$$

$$10.XeF_6 + H_2O \longrightarrow$$

$$11.\mathrm{XeO_6}^{4-} + \mathrm{Mn}^{2+} + \mathrm{H}^+ \longrightarrow$$

$$12. XeOF_4 + SiO_2 \, \longrightarrow \,$$

$$13.{
m Xe} + {
m F}_2 rac{{
m Ni}/200~{
m atm}}{400^{\circ}{
m C}}$$

Answer: (i) $4\mathrm{NaCl} + \mathrm{MnO}_2 + 4\mathrm{H}_2\mathrm{SO}_4 \rightarrow \mathrm{Cl}_2 + \mathrm{MnCl}_2 + 4\mathrm{NaHSO}_4 + 2\mathrm{H}_2\mathrm{O}$

- (ii) NaNO₂ + HCl \rightarrow NaCl + HNO₂
- $(iii) \quad \mathrm{P_4} + 3\mathrm{NaOH} + 3\mathrm{H_2O}
 ightarrow 3\mathrm{NaH_2PO_2} + \mathrm{PH_3} \uparrow$
- (iv) 3AgNO $_3$ + PH $_3$ \rightarrow Ag $_3$ P + 3HNO $_3$
- $(v) \quad 4\mathrm{Mg} + 10\mathrm{HNO_3} \rightarrow 4\mathrm{Mg}(\mathrm{NO_3})_2 + \mathrm{N_2O} + 6\mathrm{H_2O}$
- $(vi) \quad 2\mathrm{KClO}_3 \stackrel{\Delta}{\longrightarrow} 2\mathrm{KCl} + 3\mathrm{O}_2 \uparrow$
- $(vii) \quad \mathrm{Cu} + Con.\, Hot\mathrm{H}_2\mathrm{SO}_4
 ightarrow \mathrm{CuSO}_4 + 2\mathrm{H}_2\mathrm{O} + \mathrm{SO}_2 \uparrow$
- $(viii) \quad 2\mathrm{Sb} + 3\mathrm{Cl}_2 o 2\mathrm{SbCl}_3$
- (ix) 2HBr + H $_2$ SO $_4
 ightarrow 2$ SO $_2 + 2$ H $_2$ O + Br $_2$
- (x) XeF₆ + 3H₂O \rightarrow XeO₃ + 6HF
- $(xi)~~5{
 m XeO_6^{4-}} + 2{
 m Mn^{2+}} + 14{
 m H^+}
 ightarrow 2{
 m MnO_4^-} + 5{
 m XeO_5} + 7{
 m H_2O}$
- $(xii) \quad 2\mathrm{XeOF}_4 + \mathrm{SiO}_2
 ightarrow 2\mathrm{XeO}_2 \; \mathrm{F}_2 + \mathrm{SiF}_4$
- $(xiii) \quad Xe + 3F_2 \stackrel{Ni/200atm}{\longrightarrow} XeF_6$
- Write the products formed in the reaction of nitric acid (both dilute and concentrated) with zinc.

Answer: (i)
$$\mathrm{Zn} + dil \cdot \mathrm{HNO}_3 o \mathrm{Zn}(\mathrm{NO}_3)_2 + \mathrm{H}_2 \uparrow$$

(ii)
$$\operatorname{Zn} + con. HNO, o \operatorname{Zn}(\operatorname{NO}_3)_2 + \operatorname{NH}_2(\operatorname{NO}_3)_2 + \operatorname{H}_2 \uparrow$$

- 11) Arrange the following as indicated below:
 - (i) F₂, Cl₂, Br₂, I₂ increasing bond dissociation enthalpy.
 - (ii) HF, HCI, HBr, HI increasing acidic strength.

Answer: (i)
$$l_2 < F2 < Br_2 < Cl_2$$

- (ii) HF < Hq < HBr < HI.
- Explain Why inspite of nearly the same electronegativity, nitrogen forms hydrogen bonding while chlorine does not Give reason.

Answer: Nitrogen has smaller size and can polarise N-H bond d more efficiently than chlorine can do in a CI-H bond. Hence, nitrogen forms H- bond, while chlorine does not.

How is phosphine prepared?

Answer: Phosphine is prepared by the action of NaOH with white phosphorus in an inert atmosphere of CO₂ (or) hydride.

$$P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3 \uparrow$$

Sodium hypo phosphite Phosphine

Give examples for the basic nature of phosphine.

Answer: PH₃ is weakly basic and forms phosphonium salts with halogen acids.

$$\mathrm{PH_3} + \mathrm{HI} o \mathrm{PH_4I}$$

$$PH_4I + H_2O \xrightarrow{\Delta} PH_3 + H_3O^+ + I^-$$

Prove with an example the reducing property of phosphine.

Answer: Phosphine precipitates some metal from their salt solutions.

$$3 \mathrm{AgNO_3} + \mathrm{PH_3} \rightarrow \mathrm{Ag_3P} \downarrow + 3 \mathrm{HNO_3}$$

16) How is dioxygen prepared?

Answer: The decomposition of H_2O_2 in the presence of catalyst (MnO_2) or by oxidation with $KMnO_4$.

$$2\mathrm{H}_2\mathrm{O}_2 \rightleftharpoons 2\mathrm{H}_2\mathrm{O} + \mathrm{O}_2$$

$$5 {
m H_2O_2} + 2 {
m MnO_4^-} + 6 {
m H^+}
ightarrow 5 {
m O_2} + 8 {
m H_2O} + 2 {
m Mn^{2+}}$$

 H_2SO_4 is a good oxidising agent. Prove it.

Answer: It produces nascent oxygen.

$$\mathrm{H_2SO_4} \rightarrow \mathrm{H_2O} + \mathrm{SO_2} + \mathrm{(O)}$$

$$Nascent\ oxygen.$$

$$\mathrm{C} + 2\mathrm{H}_2\mathrm{SO}_4 \rightarrow 2\mathrm{SO}_2 + 2\mathrm{H}_2\mathrm{O} + \mathrm{CO}_2$$

What is the action of bleaching powder with mineral acid?

Answer :
$$CaOCl_2 + 2HCl \rightarrow CaCl_2 + H_2O + Cl_2$$

 $CaOCl_2 + H_2SO_4 \rightarrow CaSO_4 + H_2O + Cl_2$

19) Write the Redox reaction of chlorine.

Answer: Chlorine displaces bromine from bromides and Iodine from iodide salts.

$$\begin{aligned} & \operatorname{Cl}_2 + 2 \operatorname{KBr} \rightarrow 2 \operatorname{KCl} + \operatorname{Br}_2 \\ & \operatorname{Cl}_2 + 2 \operatorname{KI} \rightarrow 2 \operatorname{KCl} + \operatorname{I}_2 \end{aligned}$$

Write the uses of HCl.

Answer: (i) HCl is used for the manufacture of chlorine, NH₄Cl, glucose from corn starch etc.

(ii) Extraction of glue from bone and also for purification of bone black.