QB365 Question Bank Software Study Materials

Applications of Matrices and Determinants 50 Important 1 Marks Questions With Answers (Book Back and Creative)

12th Standard

Business Maths and Statistics

Total Marks: 50

Multiple Choice Question

 $50 \times 1 = 50$

- 1) If $A = (1 \ 2 \ 3)$, then the rank of AA^{T} is _____.
 - (a) 0 (b) 2 (c) 3 (d) 1
- The rank of m x n matrix whose elements are unity is _____.
 - (a) 0 (b) 1 (c) m (d) n
- if $T = {A \over B} \begin{pmatrix} A & B \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{pmatrix}$ is a transition probability matrix, then at equilibrium A is equal to _____.
 - (a) $\frac{1}{4}$ (b) $\frac{1}{5}$ (c) $\frac{1}{6}$ (d) $\frac{1}{8}$
- 4) If $A = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$, then $\rho(A)$ is _____.
 - (a) 0 (b) 1 (c) 2 (d) n
- The rank of the matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$ is _____.
 - (a) 0 (b) 1 (c) 2 (d) 3
- 6) The rank of the unit matrix of order n is _____.
 - (a) n-1 (b) n (c) n+1 (d) n^2
- If $\rho(A) = r$ then which of the following is correct?
 - (a) all the minors of order r which does not vanish (b) A has at least one minor of order r which does not vanish
 - (c) A has at least one (r+1) order minor which vanishes (d) all (r+1) and higher order minors should not vanish
- 8) If $A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ then the rank of AA^T is _____.
 - (a) 0 **(b) 1** (c) 2 (d) 3
- 9) If the rank of the matrix $\begin{pmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -1 & 0 & \lambda \end{pmatrix}$ is 2. Then λ is _____.
 - (a) 1 (b) 2 (c) 3 (d) only real number
- The rank of the diagonal matrix $egin{pmatrix} 1 & & & & & \\ & 2 & & & & \\ & & -3 & & & \\ & & & 0 & \\ & & & 0 \end{pmatrix}$
 - (a) 0 (b) 2 (c) 3 (d) 5

$11_{ m f}$	$T_{(a)} = 0$ $\begin{pmatrix} 0.7 & 0.3 \\ 0.6 & 0.3 \\ 0.6 & x \end{pmatrix}$ (is) a transition opposability matrix, then the value of x is
12)	Which of the following is not an elementary transformation?
	(a) $R_i \leftrightarrow R_j$ (b) $R_i o 2R_i + 2C_j$ (c) $R_i o 2R_i - 4R_j$ (d) $C_i o C_i + 5C_j$
13)	If $ ho(A)= ho(A,B)$ then the system is
	(a) Consistent and has infinitely many solutions(b) Consistent and has a unique solution(c) Consistent(d) inconsistent
14)	If $ ho(A)= ho(A,B)$ the number of unknowns, then the system is
	(a) Consistent and has infinitely many solutions(b) Consistent and has a unique solution(c) consistent
15)	If $ ho(A) eq ho(A,B)$, then the system is
	(a) Consistent and has infinitely many solutions(b) Consistent and has a unique solution(c) inconsistent(d) consistent
16)	In a transition probability matrix, all the entries are greater than or equal to
	(a) 2 (b) 1 (c) 0 (d) 3
17)	If the number of variables in a non-homogeneous system AX = B is n, then the system possesses a unique solution only when
	(a) $ ho(A) = ho(A,B) > n$ (b) $ ho(A) = ho(A,B) = n$ (c) $ ho(A) = ho(A,B) < n$ (d) none of these
18)	The system of equations $4x + 6y = 5$, $6x + 9y = 7$ has
	(a) a unique solution (b) no solution (c) infinitely many solutions (d) none of these
19)	For the system of equations $x + 2y + 3z = 1$, $2x + y + 3z = 2$, $5x + 5y + 9z = 4$
	(a) there is only one solution (b) there exists infinitely many solutions (c) there is no solution (d) None of these
20)	If $ A eq 0$, then A is
	(a) non-singular matrix (b) singular matrix (c) zero matrix (d) none of these
21)	The system of linear equations $x + y + z = 2$, $2x + y - z = 3$, $3x + 2y + k = 4$ has unique solution, if k is not equal to
	(a) 4 (b) 0 (c) -4 (d) 1
22)	Cramer's rule is applicable only to get an unique solution when
	(a) $\triangle_z eq 0$ (b) $\triangle_x eq 0$ (c) $\triangle eq 0$ (d) $\triangle_y eq 0$
23)	$\text{If } \frac{a_1}{x} + \frac{b_1}{y} = c_1, \frac{a_2}{x} + \frac{b_2}{y} = c_2, \ \triangle_{1=} \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}, \ \triangle_2 = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} \triangle_3 = \begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix} \text{ then (x, y) is } \underline{\hspace{1cm}}.$
	(a) $\left(\frac{\triangle_2}{\triangle_1}, \frac{\triangle_3}{\triangle_1}\right)$ (b) $\left(\frac{\triangle_3}{\triangle_1}, \frac{\triangle_2}{\triangle_1}\right)$ (c) $\left(\frac{\triangle_1}{\triangle_2}, \frac{\triangle_1}{\triangle_3}\right)$ (d) $\left(\frac{-\triangle_1}{\triangle_2}, \frac{-\triangle_1}{\triangle_3}\right)$
24)	$ A_{n \times n} $ = 3 $ adjA $ = 243 then the value n is
	(a) 4 (b) 5 (c) 6 (d) 7
25)	Rank of a null matrix is
	(a) 0 (b) -1 (c) ∞ (d) 1
26)	If the minor of a_{23} = the co-factor of a_{23} in $ a_{ij} $ then the minor of a_{23} is $ a_y $ then the minor of a_{23} is
	(a) 1 (b) 2 (c) 0 (d) 3

27) If IAI = 0, then [adj AI is _____

- (a) 0 (b) 1 (c) -1 (d) ± 1
- 28) For what value of k, the matrix $A=\begin{pmatrix} 2 & k \ 3 & 5 \end{pmatrix}$ has no inverse?
 - (a) $\frac{3}{10}$ (b) $\frac{10}{3}$ (c) 3 (d) 10
- 29) The rank of an n x n matrix each of whose elements is 2 is _____
 - (a) 1 (b) 2 (c) n (d) n^2
- The value of $\begin{vmatrix} 5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6 \end{vmatrix}$ 30)
 - (a) 5^2 (b) 0 (c) 5^{13} (d) 5^9
- 31) If A, B are two n x n non-singular matrices, then _____
 - (a) AB is non-singular (b) AB is singular (c) $(AB)^{-1} = A^{-1} B^{-1}$ (d) $(AB)^{-1}$ does not exit
- 32) The rank of the matrix $\begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}$ is _____
 - (b) 2 (c) 0 (d) 8 (a) 1
- 33) Equivalent matrices are obtained by _____
 - (a) Taking Inverses (b) Taking transposes (c) Taking adjoints
 - (d) Taking finite number of elementary transformation
- 34) In echelon form, which of the following is incorrect?
 - (a) Every row of A which has all its entries O occurs below every row which had a non zero entry.
 - (b) The first non-zero entry in each non-zero row is 1
 - (c) The number of zeros before the first non zero element in a row is less than the number of such zeros in the next row.
 - (d) 2 rows can have the same number of zeros before the first non-zero entry
- 35) If $\Delta
 eq 0$ then the system is _____
 - (b) consistent and has infinitely many solution (c) inconsistent (a) consistent and has unique solution
 - (d) either consistent or inconsistent
- The rank of the matrix $\begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 4 & -4 & 8 \end{pmatrix}$ is ______ 36)
 - (a) 1 (b) 2 (c) 3 (d) 4
- The rank of the diagonal matrix
 - (a) 0 (b) 2 (c) 3 (d) 5
- 38) If A = (2 01) then rank of AA^T is _____
 - (a) 1 (b) 2 (c) 3 (d) 0
- 39) If the equation -2x + y + z = l, x - 2y + z = m, x + y - 2z = n such that l + m + n = 0, then the system has ______
 - (a) non zero unique solution (b) Trivial solutions (c) Infinitely many solutions (d) No solution

40)	40) If A is a square matrix of order 3, then Adj A =		
	(a) $ A ^2$ (b) $ A $ (c) $ A ^3$ (d) $ A ^4$		
	(a) A (b) A (c) A (d) A		
41)	If $ A = 0$, then $ adj A =$		
	(a) 0 (b) 1 (c) -1 (d) ± 1		

- 42) The rank of n x n matrix each of whose element is 1 is _______

 (a) 1 (b) 2 (c) n (d) n²
- The rank of a non-singular matrix of order n x n is ______
 - (a) n (b) n^2 (c) 0 (d) 1
- Choose the correct statement
 - (a) The rank of a zero matrix is taken to be 1 (b) For zero matrix, the least value of the rank is 1
 - (c) Rank of a non-singular matrix of order n x n is n (d) $ho(A)
 eq
 ho\left(A^T
 ight)$
- 46) If a matrix is self inverse then which of the following is incorrect?
 - (a) $\operatorname{adj}(A) = |A|A$ (b) $A^2 = I$ (c) $A\operatorname{adj}(A) = I$ (d) $A^3 = A^{-1}$
- Consider Assertion a) and Reason (R) given below.

Assertion (A): Rank of a diagonal matrix of order $n \times n$ is n

Reason (R): Since $p(A) \leq min \{m, n\}$

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is nor the correct explanation of A. (c) A is true but R is false.
- (d) A is false but R is true
- 48) Match List I with List II

Match List I with List ii			
ho(A,B)= ho(A)	Consistent and has infinitely many solution		
ho(A,B)= ho(A)	= n Consistent		
ho(A,B)= ho(A)	$< {f n}$ Inconsistent, No solution		
ho(A,B) eq ho(A)	Consistent and has unique solution		

Where n denotes the number of unknowns.

The correct match is

- (a) d, b, c, a (b) a, c, b, d (c) c, a, d, b (d) b, d, a, c
- If a matrix is self inverse then which of the following is incorrect?

(a)
$$\operatorname{adj}(A)=|A|A$$
 (b) $A^2=I$ (c) $A\operatorname{adj}(A)=I$ (d) $A^3=A^{-1}$

$$|{f A}|=13 ext{ and } |\operatorname{Adj}{f A}|=egin{vmatrix} 4 & x \ 5 & 7 \end{bmatrix}$$
 then the value of x is ______

(a) 3 (b) 4 (c) 2 (d) -5