QB365 Question Bank Software Study Materials

Applications of Matrices and Determinants Important 2,3 \& 5 Marks Questions With Answers (Book Back and Creative)

12th Standard
Business Maths and Statistics

Total Marks : 75

2 Marks

1) Find the rank of the matrix $\left(\begin{array}{ll}1 & 5 \\ 3 & 9\end{array}\right)$

Answer : Let A $=\left(\begin{array}{ll}1 & 5 \\ 3 & 9\end{array}\right)$
Order of A is 2×2
$\therefore \rho(\mathrm{A}) \leq 2$
Consider the second order minor
$\left|\begin{array}{ll}1 & 5 \\ 3 & 9\end{array}\right|=-6 \neq 0$
There is a minor of order 2 , which is not zero.
$\therefore \rho(\mathrm{A}) \leq 2$
2)

Find the rank of the matrix $\left(\begin{array}{cc}-5 & -7 \\ 5 & 7\end{array}\right)$
Answer : Let $\mathrm{A}=\left(\begin{array}{cc}-5 & -7 \\ 5 & 7\end{array}\right)$
Order of A is 2×2
$\therefore \rho(\mathrm{A}) \leq 2$
Consider the second order minor $\left|\begin{array}{cc}-5 & -7 \\ 5 & 7\end{array}\right|=0$
Since the second order minor vanishes, $\rho(A) \neq 2$
Consider a first order minor $|-5| \neq 0$
There is a minor of order 1 , which is not zero
$\therefore \rho(A)=1$
3) Find the rank of each of the following matrices.
$\left(\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right)$
Answer : Let $A=\left(\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right)$
Order of A is 2×2
$\therefore \rho(A) \leq 2$ [Since minimum of $(2,2)$ is 2]
Consider the second order minor
$\left|\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right|=40-42$
$=-2 \neq 0$
There is a minor of order 2 , which is not zero
$\therefore \rho(A)=2$
4)

Find the rank of the matrix $\mathrm{A}=\left(\begin{array}{cccc}1 & -3 & 4 & 7 \\ 9 & 1 & 2 & 0\end{array}\right)$
Answer : Given $A=\left(\begin{array}{cccc}1 & -3 & 4 & 7 \\ 9 & 1 & 2 & 0\end{array}\right)$
$\left(\begin{array}{cccc}1 & -3 & 4 & 0 \\ 0 & 28 & -34 & -63\end{array}\right) R_{2} \rightarrow R_{2}-9 R_{1}$
$-\left(\begin{array}{cccc}1 & -3 & 4 & 0 \\ 0 & 0 & \frac{10}{3} & -63\end{array}\right) R_{2} \rightarrow R_{2}+\frac{28}{3} \cdot R_{1}$
The last equivalent matrix is in echelon form and there are 2 non-zero rows
$\therefore \rho(A)=2$
5) Find the rank of each of the following matrices.
$\left(\begin{array}{ll}1 & -1 \\ 3 & -6\end{array}\right)$
Answer : Let $A=\left(\begin{array}{ll}i & -1 \\ 3 & -6\end{array}\right)$
Order of A is 2×2
$\therefore \rho(A) \leq 2$ [Since minimum of $(2,2)$ is 2]
Consider the second order minor
$\left|\begin{array}{ll}1 & -1 \\ 3 & -6\end{array}\right|=-6-(-3)$
$=-6+3=-3$
$\neq 0$
There is a minor of order 2 , which is not zero
$\therefore \rho(A)=2$
6) Find the rank of each of the following matrices.
$\left(\begin{array}{ll}1 & 4 \\ 2 & 8\end{array}\right)$
Answer : Let A $=\left(\begin{array}{ll}1 & 4 \\ 2 & 8\end{array}\right)$
Order of A is 2×2 [Since minimum of $(2,2)$ is 2]
Consider the second order minor $\left|\begin{array}{ll}1 & 4 \\ 2 & 8\end{array}\right|$
$=8-8$
$=0$
Since the second order minor vanishes $\rho(A) \neq 2$
Consider a first order minor $[1] \neq 0$
There is a minor of order 1 , which is not zero
$\therefore \rho(A)=1$
7) Find the rank of the matrix $\left[\begin{array}{cc}7 & -1 \\ 2 & 1\end{array}\right]$

Answer : Let $A=\left[\begin{array}{cc}7 & -1 \\ 2 & 1\end{array}\right]$
The order of A is 2×2
$\rho(A) \leq \min (2,2)$
$\left[\begin{array}{cc}7 & -1 \\ 2 & 1\end{array}\right]=7-(-2)=7+29 \neq 0$
The highest order of non-vanishing minor of A is 2
$\therefore \rho(A)=2$
8) Solve: $2 x+3 y=4$ and $4 x+6 y=8$ using Cramer's rule.

Answer : $\Delta=\left|\begin{array}{ll}2 & 3 \\ 4 & 6\end{array}\right|=12-12=0$
$\Delta x=\left|\begin{array}{ll}4 & 3 \\ 8 & 6 \\ 4 & 3 \\ 8 & 6\end{array}\right|=24-24=0$
$\Delta x=24-24=0$
$\therefore \Delta=\Delta x=\Delta y=0$
\therefore The system is consistent with infinite number of solutions
let $\mathrm{y}=\mathrm{k}, k \in R$
$\therefore 2 x+3 k=4 \Rightarrow 2 x=4-3 k$
$\Rightarrow x=\frac{1}{2}(4-3 k), k \epsilon R$
\therefore Solution set is $\left\{\frac{4-3 k}{2}, k\right\}, k \in R$
Find the rank of $\left(\begin{array}{cc}7 & -1 \\ 2 & 1\end{array}\right)$

Answer : $A=\left(\begin{array}{cc}7 & -1 \\ 2 & 1\end{array}\right) R_{2} \rightarrow 7 R_{2}-2 R_{1}$
$\sim\left(\begin{array}{cc}7 & -1 \\ 0 & 9\end{array}\right)$
$\rho(A)=2$
10) Solve by determinant method:
(i) $2 \mathrm{x}-\mathrm{y}=3,5 \mathrm{x}+\mathrm{y}=4$
(ii) $2 x+3 y=7,2 x+y=5$
(iii) $6 x-7 y=16,9 x-5 y=35$
(iv) $3 x+2 y=5, x+3 y=4$
(v) $x+2 y=3, x+y=2$

Answer : (i) $\Delta=\left|\begin{array}{cc}2 & -1 \\ 5 & 1\end{array}\right|=2+5=7 \neq 0$
$\Delta_{x}=\left|\begin{array}{cc}3 & -1 \\ 4 & 1\end{array}\right|=3+4=7$
$\Delta_{y}=\left|\begin{array}{ll}2 & 3 \\ 5 & 4\end{array}\right|=8-15=-7$
$x=\frac{\Delta_{x}}{\Delta}=\frac{7}{7}=1$
$y=\frac{\Delta_{y}}{\Delta}=\frac{-7}{7}=-1$
Solutionis $\mathrm{x}=1, \mathrm{y}=-1$
(ii) $2 \mathrm{x}+3 \mathrm{y}=7,2 \mathrm{x}+\mathrm{y}=5$
$\Delta=\left|\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right|=2-6=-4 \neq 0$
$\Delta_{x}=\left|\begin{array}{ll}7 & 3 \\ 5 & 1 \\ 2 & 7 \\ 2 & 5\end{array}\right|=7-15=-8$
$\Delta_{y}=10-14=-4$
$x=\frac{\Delta_{x}}{\Delta}=\frac{-8}{-4}=2$
$y=\frac{\Delta_{y}}{\Delta}=\frac{-4}{-4}=1$
(iii) $6 \mathrm{x}-7 \mathrm{y}=16,9 \mathrm{x}-5 \mathrm{y}=35$
$\Delta=\left|\begin{array}{ll}6 & -7 \\ 9 & -5\end{array}\right|=-30+63=33 \neq 0$
$\Delta_{x}=\left|\begin{array}{ll}16 & -7 \\ 35 & -5\end{array}\right|=-80+245=165$
$\Delta_{y}=\left|\begin{array}{ll}6 & 16 \\ 9 & 35\end{array}\right|=210-144=66$
$x=\frac{\Delta_{x}}{\Delta}=\frac{165}{33}=5$
$y=\frac{\Delta_{y}}{\Delta}=\frac{66}{33}=2$
Solution is $\mathrm{x}=5, \mathrm{y}=2$
(iv) $3 x+2 y=5, x+3 y=4$
$\Delta=\left|\begin{array}{ll}3 & 2 \\ 1 & 3\end{array}\right|=9-2=7 \neq 0$
$\Delta_{x}=\left|\begin{array}{ll}5 & 2 \\ 4 & 3\end{array}\right|=15-8=7$
$\Delta_{y}=\left|\begin{array}{ll}3 & 5 \\ 1 & 4\end{array}\right|=12-5=7$
$x=\frac{\Delta_{x}}{\Delta}=\frac{7}{7}=1$
$y=\frac{\Delta_{y}}{\Delta}=\frac{7}{7}=1$
Solution is $\mathrm{x}=1, \mathrm{y}=1$
(v) $x+2 y=3, x+y=2$
$\Delta=\left|\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right|=1-2=-1 \neq 0$
$\Delta_{x}=\left|\begin{array}{ll}3 & 2 \\ 2 & 1\end{array}\right|=3-4=-1$
$\Delta_{y}=\left|\begin{array}{ll}1 & 3 \\ 1 & 2\end{array}\right|=2-3=-1$
$x=\frac{\Delta_{x}}{\Delta}=\frac{-1}{-1}=1$
$\mathrm{y}=\frac{\Delta_{y}}{\Delta}=\frac{-1}{-1}=1$
Solution is $\mathrm{x}=1, \mathrm{y}=1$

Find the rank of the matrix $\left(\begin{array}{cccc}1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7\end{array}\right)$
Answer : Let $A=\left(\begin{array}{cccc}1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7\end{array}\right)$
Order of A is 3×4
$\therefore \rho(\mathrm{A}) \leq 3$
Consider the third order minors
$\left|\begin{array}{ccc}1 & 2 & -1 \\ 2 & 4 & 1 \\ 3 & 6 & 3\end{array}\right|=0,\left|\begin{array}{ccc}1 & -1 & 3 \\ 2 & 1 & -2 \\ 3 & 2 & 3 \\ 2 & 4 & -2 \\ 3 & 6 & -7\end{array}\right|=0,\left|\begin{array}{ccc}2 & -1 & 3 \\ 4 & 1 & -2 \\ 6 & 3 & -7\end{array}\right|=0$
Since all third order minors vanishes, $\rho(A) \neq 3$
Now, let us consider the second order minors,
Consider one of the second order minors $\left|\begin{array}{cc}2 & -1 \\ 4 & 1\end{array}\right|=6 \neq 0$
There is a minor of order 2 which is not zero.
$\therefore \rho(A)=2$
12)

If $A=\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & -2 & 3 \\ -2 & 4 & -6 \\ 5 & 1 & -1\end{array}\right)$, then find the rank of $A B$ and the rank of $B A$.

Answer: Given
$\mathrm{A}=\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{ccc}1 & -2 & 3 \\ -2 & 4 & -6 \\ 5 & 1 & -1\end{array}\right)$
$A B=\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right)\left(\begin{array}{ccc}1 & -2 & 3 \\ -2 & 4 & -6 \\ 5 & 1 & -1\end{array}\right)$
$=\left(\begin{array}{ccc}1-2+5 & -2+4-1 & 3-6+1 \\ 2+6+20 & -4-12+45 & 6+18-4 \\ 3+4+15 & -6-8+3 & 9+12-3\end{array}\right)$
$=\left(\begin{array}{ccc}-6 & 1 & -2 \\ 28 & -12 & 20 \\ 22 & -11 & 18\end{array}\right)=\left(\begin{array}{ccc}-6 & 1 & -2 \\ 28 & -12 & 20 \\ 22 & -11 & 18\end{array}\right)$
MATRIX (AB)
ELEMENTARY TRANSFORMATION

$A B=\left(\begin{array}{ccc}-6 & 1 & -2 \\ 28 & -12 & 20 \\ 22 & -11 & 18\end{array}\right)$	
$\sim\left(\begin{array}{ccc}1 & -6 & -2 \\ -12 & 28 & 20 \\ -11 & 22 & 18\end{array}\right)$	$C_{1} \leftrightarrow C_{2}$
$\sim\left(\begin{array}{ccc}1 & -6 & -2 \\ -12 & 28 & 20 \\ -11 & 22 & 18\end{array}\right)$	$R_{2} \rightarrow R_{2}+12 R_{1}$
$\sim\left(\begin{array}{ccc}1 & -6 & -2 \\ 0 & -44 & -4 \\ 0 & -44 & -4\end{array}\right)$	$R_{3} \rightarrow R_{3}+11 R_{1}$
$\sim\left(\begin{array}{ccc}1 & -6 & -2 \\ 0 & -44 & -4 \\ 0 & 0 & 0\end{array}\right)$	$R_{3} \rightarrow R_{3}-R_{2}$

The matrix is in echelon form and the number of non-zero rows is 2 .
$\therefore \rho(A B)=2$
Now $B A=\left(\begin{array}{ccc}1 & -2 & 3 \\ -2 & 4 & -6 \\ 5 & 1 & -1\end{array}\right)\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right)$
$=\left(\begin{array}{ccc}1-4+9 & 1+6-6 & -1-8+9 \\ -2+8-18 & -2-12+12 & 2+16-18 \\ 5+2-3 & 5-3+2 & -5+4-3\end{array}\right)$
$=\left(\begin{array}{ccc}6 & 1 & 0 \\ -12 & -2 & 0 \\ 4 & 4 & -4\end{array}\right)$
MATRIX (BA)
ELEMENTARY TRANSFORMATION

$B A=\left(\begin{array}{ccc}6 & 1 & 0 \\ -12 & -2 & 0 \\ 4 & 4 & -4\end{array}\right)$	
$\sim\left(\begin{array}{ccc}1 & 6 & 0 \\ -2 & -12 & 0 \\ 4 & 4 & -4\end{array}\right)$	$C_{1} \leftrightarrow C_{2}$
$\sim\left(\begin{array}{ccc}1 & 6 & 0 \\ 0 & 0 & 0 \\ 4 & 4 & -4\end{array}\right)$	$R_{2} \rightarrow R_{2}+2 R_{1}$
$\sim\left(\begin{array}{ccc}1 & 6 & 0 \\ 0 & 0 & 0 \\ 0 & -20 & -4\end{array}\right)$	$R_{3} \rightarrow R_{3}-4 R_{1}$

The number of non-zero rows is 2 .
$\therefore \rho(B A)=2$
13) Show that the following system of equations have unique solution: $x+y+z=3, x+2 y+3 z=4, x+4 y+9 z=6$ by rank method.

Answer : Given non-homogeneous equations are
$x+y+z=3$
$x+2 y+3 z=4$
$x+4 y+9 z=6$
The matrix equation corresponding to the given system is
$\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 3 \\ 11 & 4 & 9\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}3 \\ 4 \\ 6\end{array}\right)$
$\mathrm{AX}=\mathrm{B}$

AUGMENTED

MATRIX
$\left(\begin{array}{llll}1 & 1 & 13 \\ 1 & 2 & 34 \\ 1 & 4 & 9 & 6\end{array}\right)$
$\left(\begin{array}{llll}1 & 1 & 1 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 3 & 8 & R\end{array}\right) \begin{aligned} & R_{2} \rightarrow R_{2}-R_{1} \\ & R_{3} \rightarrow R_{3}-R_{1}\end{aligned}$
$\left(\begin{array}{cccc}1 & 1 & 1 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 2 & 0\end{array}\right) R_{3} \rightarrow R_{3}-R_{2}$
Clearly the last equivalent matrix is in echelon form and it has three non-zero rows
$\therefore \rho(A)=3 \quad \rho([A, B])=3$
$\rho(A)=\rho([A, B])=3$
\therefore The given system is consistent and has unique solution.
To find the solution, let us rewrite the above echelon form into the matrix form
$\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right)$
$\Rightarrow \mathrm{x}+\mathrm{y}+\mathrm{z}=3$
$y+2 z=1$
(3) $\Rightarrow 2 x=0 \Rightarrow z=\frac{0}{2}=0$
(2) $\Rightarrow y+2(0)=1 \Rightarrow y+0=1 \Rightarrow y=1-0=1$
(1) $\Rightarrow x+1+0=3$
$\Rightarrow x+1=3$
$\Rightarrow x=3-1$
$\Rightarrow x=2$
\therefore Solution set $[2,1,0]$
14) The following table represents the number of shares of two companies A and B during the month of January and February and it also gives the amount in rupees invested by Ravi during these two months for the purchase of shares of two companies. Find the the price per share of A and B purchased during both the months

Months	Number of Shares of the company		Amount invested by Ravi (in Rs)
	A	B	
	10	5	125
February	9	12	150

Answer : Let the price of one share of A be x
Let the price of one share of B be y
\therefore By given data, we get the following equations
$10 x+5 y=125$
$9 x+12 y=150$
$\triangle=\left|\begin{array}{cc}10 & 5 \\ 9 & 12\end{array}\right|=75 \neq 0$
$\triangle_{x}=\left|\begin{array}{cc}125 & 5 \\ 150 & 12\end{array}\right|=750$
$\triangle_{y}=\left|\begin{array}{cc}10 & 125 \\ 9 & 150\end{array}\right|=375$
\therefore Cramer's rule
$x=\frac{\Delta x}{\triangle}=\frac{750}{75}=10$
$y=\frac{\triangle y}{\triangle}=\frac{375}{75}=5$
The price of the share A is Rs 10 and the price of the share B is Rs. 5.
15) A commodity was produced by using 3 units of labour and 2 units of capital, the total cost is Rs 62 . If the commodity had been produced by using 4 units of labour and one unit of capital, the cost is Rs 56 . What is the cost per unit of labour and capital? (Use determinant method).

Answer : Let Rs. x represents the cost per unit of labour and Rs. y represents the cost per unit of capital
Given
$3 x+2 y=62$
$4 x+y=56$
$\Delta=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|=3(1)-4(2)=3-8=-5$
Since $\Delta \neq 0$ the system is consistent with unique solution and Cramer's rule can be applied.
$\Delta x=\left|\begin{array}{ll}62 & 2 \\ 56 & 1\end{array}\right|=62(1)-56(2)=62-112=-50 \quad \Delta_{y}=\left|\begin{array}{ll}3 & 62 \\ 4 & 56\end{array}\right|=3(56)-4(62)$
$=168-248=-80$
$x=\frac{\Delta x}{\Delta}=\frac{10}{-50}=10$
$y=\frac{\Delta y}{\Delta}=\frac{16}{-80}=16$.
\therefore Cost per unit oflabour is Rs. 10 and the cost per unit of capital is Rs. 16.
16) Find the rank of the matrix
$A=\left(\begin{array}{ccc}2 & 4 & 5 \\ 4 & 8 & 10 \\ -6 & -12 & -15\end{array}\right)$
Answer : The order of A is 3×3
$\therefore \rho(A) \leq \min (3,3)$
$\Rightarrow \rho(A) \leq 3$

MATRIX	
$\left(\begin{array}{ccc}2 & 4 & 5 \\ 4 & 8 & 10 \\ -6 & -12 & -15\end{array}\right)$	
$-\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & 2 & 2 \\ \text { ELEMENTARY } \\ -3 & -3 & -3\end{array}\right)$	$C_{1} \rightarrow C_{1} \div 2$ $C_{2} \rightarrow C_{2} \div 4$ $C_{3} \rightarrow C_{3} \div 5$
$-\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$R_{2} \rightarrow R_{1}-2 R_{1}$ $R_{3} \rightarrow R_{3}+3 R_{1}$

The last equivalent matrix is in echelon form and it has one non-zero row
$\therefore \rho(A)=1$

Show that the equations $2 x-y+z=7,3 x+y-5 z=13, x+y+z=5$ are consistent and have a unique solution.

Answer : The non-homogeneous equation are
$2 \mathrm{x}-\mathrm{y}+\mathrm{z}=7,3 \mathrm{x}+\mathrm{y}-5 \mathrm{z}=13, \mathrm{x}+\mathrm{y}+\mathrm{z}=5$
AUGMENTED MATRIX

[A,B]	
$\left(\begin{array}{cccc}2 & -1 & 1 & 7 \\ 3 & 1 & -5 & 13 \\ 1 & 1 & 1 & 5\end{array}\right)$	
$-\left(\begin{array}{cccc}1 & 1 & 1 & 5 \\ 3 & 1 & -5 & 13 \\ 2 & -1 & 1 & 7\end{array}\right)$	$R_{1} \leftrightarrow R_{3}$
$\left(\begin{array}{cccc}1 & 1 & 1 & 5 \\ 0 & -2 & -8 & -2 \\ 0 & -3 & -1 & -3\end{array}\right)$	$R_{2} \rightarrow R_{2}-3 R_{1}$ $R_{3} \rightarrow R_{3}-2 R_{1}$
$\sim\left(\begin{array}{cccc}1 & 1 & 1 & 5 \\ 0 & -2 & -8 & -2 \\ 0 & 0 & 11 & 0\end{array}\right)$	$R_{3} \rightarrow R_{3}-\frac{3}{2} R_{2}$
\sim	

Clearly $\rho(A)=3$ and $\rho(A, B)=3=$ Number of unknowns
\therefore The given system is consistent and has unique solution.
18) Two products A and B currently share the market with shares 60% and 40% each respectively. Each week some brand switching latees place. Of those who bought A the previous week 70% buy it again whereas 30% switch over to B. Of those who bought B the previous week, 80% buy it again whereas 20% switch over to A. Find their shares after one week and after two weeks.

Answer : Transition probability matrix

$$
T=\begin{gathered}
A \\
A \\
B
\end{gathered}\left(\begin{array}{cc}
0.7 & 0.3 \\
0.2 & 0.8
\end{array}\right)
$$

Shares after one week
$(.6 \cdot 4)\left(\begin{array}{ll}\cdot 7 & \cdot 3 \\ \cdot 6 & .8\end{array}\right)$
$=(-6 \times \cdot 7+-4 \mathrm{x} \cdot 2 \cdot 6 \times \cdot 3+\cdot 4 \times \cdot 8)$
$=z:(-42+\cdot 08 \cdot 18+\cdot 32)=(\cdot 50 \cdot 50)$
$\Rightarrow \mathrm{A}=50 \%$ and $\mathrm{B}=50 \%$
Shares after two weeks $(\cdot 5 \cdot 5)\left(\begin{array}{cc}\cdot 7 & \cdot 3 \\ \cdot 2 & .8\end{array}\right)$
$=(-5 \times \cdot 7+\cdot 5 \times .2 \cdot 5 \times \cdot 3+\cdot 5 \times \cdot 8)$
$=(-35+\cdot 10 \cdot 15+40)=(-45 \cdot 55)$
$A=45 \%$ and $B=55 \%$
19) Show that the equations $x+y+z=-3,3 x+y-2 z=-2,2 x+4 y+7 z=7$ are not consistent.

Answer : In matrix form
$\left(\begin{array}{ccc}1 & 1 & 1 \\ 3 & 1 & -2 \\ 2 & 4 & 7\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-3 \\ -2 \\ 7\end{array}\right)$
Augmented matrix
$(A, B)=\left(\begin{array}{cccc}1 & 1 & 1 & -3 \\ 3 & 1 & -2 & -2 \\ 2 & 4 & 7 & 7\end{array}\right)$
$\sim\left(\begin{array}{cccc}1 & 1 & 1 & -3 \\ 0 & -2 & -5 & 7 \\ 0 & 2 & 5 & 13\end{array}\right) R_{2} \rightarrow R_{3}-2 R_{1}$
$\sim\left(\begin{array}{cccc}1 & 1 & 1 & -3 \\ 0 & -2 & -5 & 7 \\ 0 & 0 & 0 & 20\end{array}\right) \quad R_{3} \rightarrow R_{3}+R_{2}$
$\rho(A, B)=3, \rho(A)=2$
$\rho(A, B) \neq \rho(A)$
The system is inconsistent.

Solve, by Cramer's rule $x+y=2, y+z=6, z+x=4$.

Answer : $\Delta=\left|\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right|=1(1-0)-1(0-1)$
Cramer's rule is applicable

$$
\begin{aligned}
& \Delta_{x}=\left|\begin{array}{lll}
2 & 1 & 0 \\
6 & 1 & 1 \\
4 & 0 & 1
\end{array}\right|=2(1-0)-1(6-4) \\
& =2-2=0 \\
& \Delta_{y}=\left|\begin{array}{lll}
1 & 2 & 0 \\
0 & 6 & 1 \\
1 & 4 & 1
\end{array}\right|=1(6-4)-2(0-1) \\
& =2+2=4 \\
& \Delta_{z}=\left|\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 6 \\
1 & 0 & 4
\end{array}\right|=1(4-0)-1(0-6)+2(0-1) \\
& =4+6-2=8 \\
& x=\frac{\Delta_{x}}{\Delta}=\frac{0}{2}=0 \\
& \mathrm{y}=\frac{\Delta_{y}}{\Delta}=\frac{4}{2}=2 \\
& z=\frac{\Delta_{z}}{\Delta}=\frac{8}{2}=4
\end{aligned}
$$

Solution is $x=0, y=2, z=4$
21) Show that the equations $5 x+3 y+7 z=4,3 x+26 y+2 z=9,7 x+2 y+10 z=5$ are consistent and solve them by rank method.

Answer : Given non-homogeneous equations are
$5 x+3 y+7 z=4$
$3 x+26 y+2 z=9$
$7 x+2 y+10 z=5$
The matrix equation corresponding to the given system is
$\left(\begin{array}{ccc}5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}4 \\ 9 \\ 5\end{array}\right)$

$\begin{aligned} & \text { AUGMENTED } \\ & \text { MATRIX [A, B] } \end{aligned}$	ELEMENTARY TRANSFORMATION
$\left(\begin{array}{cccc}5 & 3 & 7 & 4 \\ 3 & 26 & 2 & 9 \\ 7 & 2 & 10 & 5\end{array}\right)$	
$\sim\left(\begin{array}{cccc}3 & 26 & 2 & 9 \\ 5 & 3 & 7 & 4 \\ 7 & 2 & 10 & 5\end{array}\right)$	$R_{1} \leftrightarrow R_{2}$
$\left(\begin{array}{cccc}1 & \frac{26}{3} & \frac{2}{3} & 3 \\ 5 & 3 & 7 & 4 \\ 7 & 2 & 10 & 5\end{array}\right)$	$R_{1} \rightarrow R_{1} \div 3$
$\left(\begin{array}{cccc}1 & \frac{26}{3} & \frac{2}{3} & 3 \\ 0 & \frac{-121}{3} & \frac{11}{3} & -11 \\ 7 & 2 & 5 & 5\end{array}\right)$	$R_{2} \rightarrow R_{2}-5 R_{1}$
$\left(\begin{array}{cccc}1 & \frac{26}{3} & \frac{2}{3} & 3 \\ 0 & \frac{-121}{3} & \frac{11}{3} & -11 \\ 0 & \frac{-176}{3} & \frac{16}{3} & -16\end{array}\right)$	$R_{3} \rightarrow R_{3}-7 R_{1}$
$\sim\left(\begin{array}{cccc}1 & \frac{26}{3} & \frac{2}{3} & 3 \\ 0 & \frac{-11}{3} & \frac{1}{3} & -1 \\ 0 & \frac{-11}{3} & \frac{1}{3} & -1\end{array}\right)$	$\begin{aligned} & R_{2} \rightarrow R_{2} \div 11 \\ & R_{3} \rightarrow R_{3} \div 16 \end{aligned}$
$\left(\begin{array}{cccc}1 & \frac{26}{3} & \frac{2}{3} & 3 \\ 0 & \frac{-11}{3} & \frac{1}{3} & -1 \\ 0 & 0 & 0 & 0\end{array}\right)$	$R_{3} \rightarrow R_{3}-R_{2}$

\therefore The system is consistent with infinitely many solutions let us rewrite the above echelon form into matrix form
$\left(\begin{array}{ccc}1 & \frac{26}{3} & \frac{2}{3} \\ 0 & \frac{-11}{3} & \frac{1}{3} \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}3 \\ -1 \\ 0\end{array}\right)$
$x+\frac{26}{3} y+\frac{2}{3} z=3$
$x+\frac{26}{3} y+\frac{2}{3} z=3$
let $\mathrm{z}=\mathrm{k}$ where $\mathrm{k} \in \mathrm{R}$
$(2) \Rightarrow \frac{-11}{3} y+\frac{k}{3}=-1$
$\Rightarrow-11 y=-3-k$
$11 \mathrm{y}=3+\mathrm{k}$
$\Rightarrow \quad y=\frac{1}{11}(3+k)$
Substituting $y=\frac{1}{11}(3+k)$ and $z=\mathrm{k}$ in (1) we get,
$x+\frac{26}{3}\left(\frac{3+k}{11}\right)+\frac{2}{3} k=3$
$=\frac{26}{3}\left(\frac{3+k}{11}\right)-\frac{2 k}{3}+3$
$\frac{78-26 k}{33}-\frac{2 k}{3}+3$
$\frac{78-26 k-22 k+99}{33}$
$78-96 k-9.9 k+00$

$\frac{21-48 k}{33}=\frac{3(7-16 k)}{33}$
$=\frac{1}{11}(7-6 k)$
\therefore Solution set is $\left\{\frac{1}{11}(7-16 k), \frac{1}{11}(3+k), k\right\} \mathrm{K} \in \mathrm{R}$
Hence, for different values of k, we get infinitely many solutions.
22) In a market survey three commodities A, B and C were considered. In finding out the index number some fixed weights were assigned to the three varieties in each of the commodities. The table below provides the information regarding the consumption of three commodities according to the three varieties and also the total weight received by the commodity

Commodity Variety	Variety		Total	
	I	II	III	weight
A	1	2	3	11
B	2	4	5	21
C	3	5	6	27

Find the weights assigned to the three varieties by using Cramer's Rule.

Answer : Let the weight assigned to the three varieties be Rs. x, Rs. y and Rs. z respectively By the given data,
$x+2 y+3 z=11$
$2 x+4 y+5 z=21$
$3 x+5 y+6 z=27$
$\Delta=\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right|=1\left|\begin{array}{ll}4 & 5 \\ 5 & 6\end{array}\right|-2\left|\begin{array}{ll}2 & 5 \\ 3 & 6\end{array}\right|+3\left|\begin{array}{ll}2 & 4 \\ 3 & 5\end{array}\right|$
$=1(24-25)-2(12-15)+3(10-12)$
$=1(-1)-2(-3)+3(-2)$
$=-1+6-6=-1 \neq 0$.
Since $\Delta \neq 0$ the system is consistent with unique solution and Cramer's rule can be applied.
$\Delta x=\left|\begin{array}{lll}11 & 2 & 3 \\ 21 & 4 & 5 \\ 27 & 5 & 6\end{array}\right|$
$=11\left|\begin{array}{ll}4 & 5 \\ 5 & 6\end{array}\right|-2\left|\begin{array}{ll}21 & 5 \\ 27 & 6\end{array}\right|+3\left|\begin{array}{ll}21 & 4 \\ 27 & 5\end{array}\right|$
$=11(24-25)-2(126-135)+3(105-108)$
$=11(-1)-2(-9)+3(-3)$
$=11+18-9$
$=-2$
$\Delta y=\left|\begin{array}{lll}1 & 11 & 3 \\ 2 & 21 & 5 \\ 3 & 27 & 6\end{array}\right|$
$=\left|\begin{array}{ll}21 & 5 \\ 27 & 6\end{array}\right|-11\left|\begin{array}{ll}2 & 5 \\ 3 & 6\end{array}\right|+3\left|\begin{array}{ll}2 & 21 \\ 3 & 27\end{array}\right|$
$=1(126-135)-11(12-15)+3(54-63)$
$=-9-11(-3)+3(-9)$
$=-9+33-27$
= 3
$\Delta z=\left|\begin{array}{lll}1 & 2 & 11 \\ 2 & 4 & 21 \\ 3 & 5 & 27\end{array}\right|=1\left|\begin{array}{ll}4 & 21 \\ 5 & 27\end{array}\right|-2\left|\begin{array}{ll}2 & 21 \\ 3 & 27\end{array}\right|+11\left|\begin{array}{ll}2 & 4 \\ 3 & 5\end{array}\right|$
$=1(108-105)-2(54-63)+11(10-12)$
$=1(3)-2(-9)+11(-2)$
$=3+18-22$
$=-1$
$x=\frac{\Delta x}{\Delta}=\frac{-2}{-1}=2$
$y=\frac{\Delta y}{\Delta}=\frac{-3}{1}=3$
and $z=\frac{\Delta z}{\Delta}=\frac{-1}{-1}=1$
Hence, the weights assigned to the three varieties are 2,3 and 1 respectively
23) Two products A and B currently share the market with shares 50% and 50% each respectively. Each week some brand switching takes place. Of those who bought A the previous week, 60% buy it again whereas 40% switch over to B. Of those who bought B the previous week, 80% buy it again where as 20% switch over to A. Find their shares after one week and after two weeks. If the price war continues, when is the equilibrium reached?

Answer : Transition probability matrix
$\left.T=\begin{array}{c}A \\ A\left(\begin{array}{cc}\cdot 6 & -4 \\ B & 2\end{array}\right. \\ .8\end{array}\right)$
By the given data
$\mathrm{A}=50 \%=\cdot 5$
$B=50 \%=\cdot 5$
Shares after one week
$\left(\begin{array}{ll}.5 & .5\end{array}\right)\left(\begin{array}{ll}.6 & .4 \\ .2 & .8\end{array}\right)$
$=(.5)(.5)(.2) \cdot 5(4)+.5(.8)$
$=(\cdot 30+\cdot 10 \cdot 20+40)$
$=\left(\begin{array}{ll}.40 & .60\end{array}\right)$
\therefore Shares after one week for products A and Bare 40% and 60% respectively.
Shares after two weeks
$\left(\begin{array}{ll}\cdot 4 & .6\end{array}\right)\left(\begin{array}{ll}.6 & .4 \\ .2 & .8\end{array}\right)$
$((\cdot 4)(\cdot 6)+(\cdot 6)(\cdot 2) \cdot(\cdot 4)(\cdot 4)+\cdot 6(0.8))$
$=(\cdot 24+\cdot 12 \cdot 16+\cdot 48)$
$=\left(\begin{array}{ll}.36 & \cdot 64\end{array}\right)$
\therefore Shares after two week for products A and Bare 36\% and 64\% respectively.
At equilibrium, we must have (A B) $T=(A B)$
where $\mathrm{A}+\mathrm{B}=1$
$\left(\begin{array}{ll}A & B\end{array}\right)\left(\begin{array}{cc}\cdot 6 & \cdot 4 \\ \cdot 2 & \cdot 8\end{array}\right)=\left(\begin{array}{ll}A & B\end{array}\right)$
$\Rightarrow=(-6 \mathrm{~A}+\cdot 2 \mathrm{~B}-4 \mathrm{~A}+\cdot 8 \mathrm{~B})=(\mathrm{AB})$
Equating the corresponding entries on both sides
we get,
$\cdot 6 \mathrm{~A}+\cdot 2 \mathrm{~B}=\mathrm{A}$
$\Rightarrow \cdot 6 \mathrm{~A}+\cdot 2(1-\mathrm{A})=\mathrm{A}$
$\Rightarrow \cdot 6 \mathrm{~A}+\cdot 2-\cdot 2 \mathrm{~A}=\mathrm{A}$
$\Rightarrow \cdot 2=\mathrm{A}-\cdot 6 \mathrm{~A}+\cdot 2 \mathrm{~A}$
$\Rightarrow \cdot 2=\mathrm{A}(1-\cdot 6+\cdot 2)$
$\Rightarrow \cdot 2=\mathrm{A}(\cdot 4+\cdot 2)$
$\Rightarrow \cdot 2=A(\cdot 6)$
$\Rightarrow A=\frac{.2}{.6}=.33 \Rightarrow A=33$
and $B=1-A=1-\cdot 33=\cdot 67 \Rightarrow B=67 \%$
\therefore Equilibrium is reached when $A=33 \%$ and $B=67 \%$
24) Solve the equations $x+2 y+z=7,2 x-y+2 z=4, x+y-2 z=-1$ by using Cramer's rule

Answer : $\Delta=\left|\begin{array}{ccc}1 & 2 & 1 \\ 2 & -1 & 2 \\ 1 & 1 & -2\end{array}\right|$
$=1\left|\begin{array}{cc}-1 & 2 \\ 1 & -2\end{array}\right|-2\left|\begin{array}{cc}2 & 2 \\ 1 & -2\end{array}\right|+1\left|\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right|$
$=1(2-2)-2(-4-2)+1(2+1)$
$=1(0)-2(-6)+1(3)$
$=12+3=15 \neq 0$.
Since $\Delta \neq 0$ Cramer's rule can be applied and thesystem is consistent with unique solution.
$\Delta x=\left|\begin{array}{ccc}7 & 2 & 1 \\ 4 & -1 & 2 \\ -1 & 1 & -2\end{array}\right|$
$=7\left|\begin{array}{cc}-1 & 2 \\ 1 & -2\end{array}\right|-2\left|\begin{array}{cc}4 & 2 \\ -1 & -2\end{array}\right|+1\left|\begin{array}{cc}4 & -1 \\ -1 & 1\end{array}\right|$
$=7(2-2)-2(-8+2)+1(4-1)$
$=7(0)-2(-6)+1(3)$
$=12+3=15$
$\Delta y=\left|\begin{array}{ccc}1 & 7 & 1 \\ 2 & 4 & 2 \\ 1 & -1 & -2\end{array}\right|$
$=1\left|\begin{array}{cc}4 & 2 \\ -1 & -2\end{array}\right|-7\left|\begin{array}{cc}2 & 2 \\ 1 & -2\end{array}\right|+1\left|\begin{array}{cc}2 & 4 \\ 1 & -1\end{array}\right|$
$=1(-8+2)-7(-4-2)+1(-2-4)$
$=1(-6)-7(-6)+1(-6)$
$=-6+42-6=30$
$\Delta z=\left|\begin{array}{ccc}1 & 2 & 7 \\ 2 & -1 & 4 \\ 1 & 1 & -1\end{array}\right|$
$=1\left|\begin{array}{cc}-1 & 4 \\ 1 & -1\end{array}\right|-2\left|\begin{array}{cc}2 & 4 \\ 1 & -1\end{array}\right|+7\left|\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right|$
$=1(1-4)-2(-2-4)+7(2+1)$
$=1(-3)-2(-6)+7(3)$
$=-3+12+21=30$
$x=\frac{\Delta x}{\Delta}=\frac{165}{15}=1$
$y=\frac{\Delta y}{\Delta}=\frac{2}{36}=2$
$z=\frac{\Delta z}{\Delta}=\frac{20}{15}=2$
\therefore Solution set is $\{1,2,2\}$
25) Solve the following equation by using Cramer's rule

$$
x+y+z=6,2 x+3 y-z=5,6 x-2 y-3 z=-7
$$

Answer : $\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 3 & -1 \\ 6 & -2 & -3\end{array}\right|$
$=1\left|\begin{array}{cc}3 & -1 \\ -2 & -3\end{array}\right|-1\left|\begin{array}{cc}2 & -1 \\ 6 & 3\end{array}\right|+1\left|\begin{array}{cc}2 & 3 \\ 6 & -2\end{array}\right|$
$=1(-9-2)-1(-6+6)+1(-4-18)$
$=1(-11)-1(0)+1(-22)$
$=-11-22=-33 \neq 0$
Since $\Delta \neq 0$
Cramer's rule can be applied and the system is consistent with unique solution
$\Delta x=\left|\begin{array}{ccc}6 & 1 & 1 \\ 5 & 3 & -1 \\ -7 & -2 & -3\end{array}\right|$
$=6\left|\begin{array}{cc}3 & -1 \\ -2 & -3\end{array}\right|-1\left|\begin{array}{cc}5 & -1 \\ -7 & -3\end{array}\right|+1\left|\begin{array}{cc}5 & 3 \\ -7 & -2\end{array}\right|$
$=6(-9-2)-1(-15-7)+1(-10+21)$
$=6(-11)-1(-22)+1(11)$
$=-66+22+11=-33$
$\Delta y=\left|\begin{array}{ccc}1 & 6 & 1 \\ 2 & 5 & -1 \\ 6 & -7 & -3\end{array}\right|$
$=1\left|\begin{array}{cc}5 & -1 \\ -7 & -3\end{array}\right|-6\left|\begin{array}{cc}2 & -1 \\ 6 & -3\end{array}\right|+1\left|\begin{array}{cc}2 & 5 \\ 6 & -7\end{array}\right|$
$=1(-15-7)-6(-6+6)+1(-14-30)$
$=1(-22)-6(0)+1(-44)$
$=-22-44=-66$
$\Delta z=\left|\begin{array}{ccc}1 & 1 & 6 \\ 2 & 3 & 5 \\ 6 & -2 & -7\end{array}\right|$
$==1\left|\begin{array}{cc}3 & 5 \\ -2 & -7\end{array}\right|-1\left|\begin{array}{cc}2 & 5 \\ 6 & -7\end{array}\right|+6\left|\begin{array}{cc}2 & 3 \\ 6 & -2\end{array}\right|=1(-21+10)-1(-14-30)+6(-4-18)$
$=1(-11)-1(-44)+6(-22)$
$=-11+44-132=-99$
$x=\frac{\Delta x}{\Delta}=\frac{-33 \mid}{-35}=1$
$y=\frac{\Delta y}{\Delta}=\frac{-66}{-33}=2$
$z=\frac{\Delta z}{\Delta}=\frac{-99}{-35}=3$
\therefore Solution set is $\{1,2,3\}$

