QB365 Question Bank Software Study Materials

Applied Statistics Important 2,3 & 5 Marks Questions With Answers (Book Back and Creative)

12th Standard

Business Maths and Statistics

Total Marks: 50

 $10 \ge 2 = 20$

<u>2 Marks</u>

1)

Fit a trend line by the method of semi-averages for the given data.

Year	1990	1991	1992	1993	1994	1995	1996	1997
Sales	15	11	20	10	15	25	35	30

Answer : Since the number of years is even(eight), we can equally divide the given data it two equal parts and obtain the averages of first four years and last four years.

Year	Production	Average
1990	15	
1991	11	15+11+20+10 - 14
1992	20	
1993	10	
1994	15	
1995	25	15+25+35+30 — 26 25
1996	35	
1997	30	

2) Define Time series.

Answer : A time series consists of a set of observations arranged in chronological order (either ascending or descending). It is a statistical data which relates to successive intervals or point of time.

3) What is the need for studying time series?

Answer: (i) It helps in the analysis of the past behavior

- (i) It helps in forecasting and for future plans
- (ii) It helps in the evaluation of current achievements
- (iv) It helps in making comparative studies between one time period and others
- 4) Explain cyclic variations.

Answer : Cyclic uniformly periodic in nature. They may or may not follow exactly similar patterns after equal intervals of time. Generally one cyclic period ranges from 7 to.9 years and there is no hard and fast rule in the fixation of years for a cyclic period. For example, every business cycle has a Start-Boom-Depression- Recover maintenance during booms and depressions, changes in government monetary policies, changes in interestrates.

5) State the two normal equations used in fitting a straight line.

Answer : The two normal equations are $\sum Y = n a + b \sum X$ $\sum XY = a \sum X + b \sum X^{2}$ where n is the number of years given in the data.

6)

Write note on Fisher's price index number.

Answer : Fisher's price index number is the geometric mean of Laspeyre's and Paasche's price index number. Hence it is weighted index number.

Fisher's price index number = $\sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$

7) Define Time Reversal Test.

Answer : Time reversal test is an important test for testing the consistency of a good index number. This test maintains time consistency by working both forward and backward with respect to time (here time refers to base year and current year). Symbolically the following Relationship should be satisfied, $P_{01} \times P_{10} = 1$ Fisher's index number formula satisfies the above relationship

i.e.
$$P_{01} = rac{1}{P_{10}} ext{ or } P_{01} imes P_{10} = 1 (ext{ Except the factor } 100 ext{)}$$

V

8) Explain Factor Reversal Test.

Answer : Factor reversal test is another test for testing the consistency of a good index number. The product of price index number and quantity index number from the base year to the current year should be equal to the true value ratio. That is ratio between the total value of current period and total value of the base period is known as true value ratio. Factor reversal test is given by,

$${
m i.e.} \; P_{01} imes Q_{01} = rac{\sum P_1 q_1}{\sum p_0 q_0} = V_{01}(\; {
m Except the factor 100})$$

9) What do you mean by process control?

Answer : The main objective in any product process is to control and maintain a satisfactory quality level of the manufactured product. This is done by Process Control. In process control the proportion of defective items in the production process is to be minimized and it is achieved through the technique of control charts.

¹⁰⁾ Write the control limits for the R chart.

Answer:

Case (i)	Case (ii)				
when SD are given	when SD are not given				
(i) UCL = $\overline{R} + 3\sigma_R$	(i) UCL = $D_4 \overline{R}$				
(ii) CL = \overline{R}	(ii) CL = \overline{R}				
(iii) LCL = $\overline{R} - 3\sigma_R$	(iii) LCL = $D_3 \overline{R}$				

<u> 3 Marks</u>

Year	2000	2001	2002	2003	2004	2005	2006
Production	105	115	120	100	110	125	135

Answer : Since the number of years is odd(seven), we will leave the middle year's production value and obtain the averages of first three years and last three years.

5 x 3 = 15

2001	115	$rac{105+115+120}{3}=113.33$
2002	120	
2003	100(left out)	
2004	110	
2005	125	$rac{110+125+135}{3}=123.33$
2006	135	

12)

A machine drills hole in a pipe with a mean diameter of 0.532 cm and a standard deviation of 0.002 cm. Calculate the control limits for mean of samples 5.

Answer : Given \bar{X} = 0532., σ = 0.002, n = 5

The control limits for $ar{X}$ chart is

 $UCL = \overline{\ddot{X}} + 3rac{\sigma}{\sqrt{n}} = 0.532 + 3rac{0.002}{\sqrt{5}} = 0.5346$ $CL = \overline{\ddot{X}} = 0.532$ $UCL = \overline{\ddot{X}} - 3rac{\sigma}{\sqrt{n}} = 0.532 - 3rac{0.002}{\sqrt{5}} = 0.5293$

13)

Construct the cost of living Index number for 2015 on the basis of 2012 from the following data using family budget method.

Commoditu	Pri	ice	Weight	
commonly	2012	2015	weight	
Rice	250	280	10	
Wheat	70	280	5	
Corn	150	170	6	
Oil	25	35	4	
Dhal	85	90	3	

Answer:

Commodity		Pr	ice	$\mathbf{P} = \frac{p_1}{p_1}$		
		2012 2015		$\begin{array}{c} \mathbf{F} = \frac{1}{p_0} \\ \times 100 \end{array}$	V	[PV
		(p ₀)	(p ₀)			
	Rice	250	280	112	10	1120
	Wheat	70	85	121.42	5	607.1
	Corn	150	170	113.33	6	679.98
	Oil	25	35	140	4	560
	Dhal	85	90	105.88	3	317.64
					28	3284.72

Using family budget method,

C.L.I =
$$\frac{\sum PV}{\sum V} = \frac{3284.72}{28} = 117.31$$

14)

⁺⁾ From the following data, calculate the trend values using fourly moving averages.

Year	1990	1991	1992	199	1994	1995	1996	1997	1998
Sales	506	620	1036	673	588	696	1116	738	663

Answer : The treand values is using fourly moving average given below

Veer	Salas	4 Yearly moving	4 Yearly moving		
rear Sales		total	average		
1990	506	-	-		
1991	620				
		2835	708.75		
1992	1036				
		2917	729.25		
1993	673				
		2993	748.25		
1994	588				
		3073	768.25		
1995	696				
		3138	784.5		
1996	1116				
		3213	803.25		
1997	738				
1998	663				

15)

An Enquiry was made into the budgets of the middle class families in a city gave the following information.

Expenditure	Food	Rent	Clothing	Fuel	Rice
Price(2010)	150	50	100	20	60
Price(2011)	174	60	125	25	90

Weights	35	15	20	10	20
---------	----	----	----	----	----

What changes in the cost of living have taken place in the middle class families of a city?

Answer:

D	Weights	Rent	Price	P =	DX7
Expenditure	(V)	2010 (p0)	2011 (p1)	$rac{p_1}{p_0} imes 100$	PV
Food	35	150	174	116	4060
Rent	15	50	60	120	1800
Clothing	20	100	125	125	2500
Fuel	10	20	25	125	1250
Rice	20	60	90	150	3000
	100				12610
			DV 10010		

Cost of living index number = $\frac{\sum PV}{\sum V} = \frac{12610}{100} = 126.10$

 $\div\,$ The cost of living has increased upto 26.10% in 2011 as compared to 2010.

<u>5 Marks</u>

 $3 \ge 5 = 15$

16) Given below are the data relating to the sales of a product in a district.

Fit a straight line trend by the method of least squares and tabulate the trend values.

Year	1995	1996	1997	1998	1999	2000	2001	2002
Sales	6.7	5.3	4.3	6.1	5.6	7.9	5.8	6.1

Answer : Computation of trend values by the method of least squares.

In case of EVEN number of years, let us consider

\boldsymbol{Y}	_	(x-Arithimetic mean of two middle years)
1		05

$\Lambda = -$		0.5						
Year(x)	Sales(Y)	$\mathbf{X} = \frac{(x - 1998.5)}{0.5}$	XY	X ²	Trend Values (Y_t)			
1995	6.7	-7	-46.9	49	5.6166			
1996	5.3	-5	-26.5	25	5.7190			
1997	4.3	-3	-12.9	9	5.8214			
1998	6.1	-1	-6.1	1	5.9238			
1999	5.6	1	5.6	1	6.0261			
2000	7.9	3	23.7	9	6.1285			
2001	5.8	5	29.0	25	6.2309			
2002	6.1	7	42.7	49	6.3333			
N = 8	47.8	$\sum X$ = 0	8.6	168				
$a = rac{\sum Y}{n} = rac{47.8}{8} = 5.975; b = rac{\sum XY}{\sum X^2} = rac{8.6}{168} = 0.05119$								

Therefore, the required equation of the straight line trend is given by

Y = a + bX; Y = 5.975 + 0.05119 X.

When X = 1995, $Y_t = 5.975 + 0.05119 \left(\frac{1995 - 1998.5}{0.5}\right) = 5.6166$ When X = 1996, $Y_t = 5.975 + 0.05119 \left(\frac{1996 - 1998.5}{0.5}\right) = 5.7190$ similarly other values can be obtained.

17)

Using the following data, construct Fisher's Ideal index and show how it satisfies Factor Reversal Test and Time Reversal Test?

	Price in R	upees per unit	Number of units			
Commodity	Base year	Current year	Base year	Current year		
A	6	10	50	56		
В	2	2	100	120		
С	4	6	60	60		
D	10	12	50	24		
E	8	12	40	36		

Answer:

Commoditu	Price in	Rup	Number of units			
Commonly	Ро		P 1	q o	\mathbf{q}_1	
А	6		10	50	56	
В	2		2	100	120	
С	4		6	60	60	
D	10		12	50	24	
E	8		12	40	36	
poqo poq1 p	1 q 0 p 1 q 1					

300	560	500	336
200	240	200	240
240	360	360	240
500	288	600	240
320	432	480	288
1560	1880	2140	1344

Fisher's price index number

$$\begin{split} P_{01}^{P} &= \sqrt{\frac{\sum p_{1}q_{0} \times \sum p_{1}q_{1}}{\sum p_{0}q_{0} \times \sum p_{0}q_{1}}} \times 100 \\ &= \sqrt{\frac{2140 \times 1880}{1560 \times 1344}} \times 100 \\ &= \sqrt{\frac{4023200}{2096640}} \times 100 \\ &= \sqrt{1.9188} \times 100 \\ P_{01}^{F} &= 138.5 \\ \text{Time reversal test :} \end{split}$$

$$\begin{split} \mathbf{P}_{01} \times \mathbf{P}_{10} &= \sqrt{\frac{\sum p_1 q_0 \times p_1 q_1 \times p_0 q_1 \times p_0 q_0}{\sum p_0 q_0 \times p_0 q_1 \times p_1 q_1 \times p_1 q_0}} \\ &= \sqrt{\frac{2140 \times 1880 \times 1344 \times 1560}{1560 \times 1344 \times 1880 \times 2140}} \\ &= \sqrt{1} = 1 \end{split}$$

Time reversal test = 1

Factor reversal test:

$$P_{01} \times Q_{01} = \sqrt{\frac{\sum p_1 q_0 \times p_1 q_1 \times p_0 q_1 \times p_0 q_0}{\sum p_0 q_0 \times p_0 q_1 \times p_1 q_1 \times p_1 q_0}}$$

= $\sqrt{\frac{2140 \times 1880 \times 1344 \times 1560}{1560 \times 1344 \times 1880 \times 2140}}$
= $\sqrt{(\frac{1880}{1560})^2}$
= $\frac{1880}{1560}$
P_{01} $\times Q_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$

18) From the following data, calculate the control limits for the mean and range chart.

Sample No.	1	2	3	4	5	6	7	8	9	10
	50	51	50	48	46	55	45	50	47	56
	55	50	53	53	50	51	48	56	53	53
Sample Observations	52	53	48	50	44	56	53	54	49	55
	49	50	52	51	48	47	48	53	52	54
	54	46	47	53	47	51	51	57	54	52

Answer:

Sample	Observation			Total		R = X _{max} -		
No.	1	2	3	4	5	Totai	x	\mathbf{X}_{\min}
1	50	55	52	49	54	260	52	55-49 = 6
2	51	50	53	50	46	250	50	53-46 = 7
3	50	53	48	52	47	250	50	53-47 = 6
4	48	53	50	51	53	255	51	53-48 = 5
5	46	50	44	48	47	235	47	50-44 = 6
6	55	51	56	47	51	260	52	56-47=9
7	45	48	53	48	51	245	49	53-45=8
8	50	56	54	53	57	270	54	57-50 = 7
9	47	53	49	52	54	255	51	54-47 = 7
10	56	53	55	54	52	270	54	56-52 = 4
							510	65

 $\overline{\overline{X}} = \frac{510}{10} = 51$

$$\overline{R}$$
 = $\frac{65}{10}$ = 6.5

The control limits of mean chart are

UCL = $\overline{\overline{X}} + A_2 \overline{R}$ = 51 + 0.577 (6.5) = 51 + 3.75 = 57.75 CL = $\overline{\overline{X}}$ = 51 LCL = $\overline{\overline{X}} - A_2 \overline{R}$ = 51 - 3.75 = 47.25 The control limits of range chart are UCL = $D_4 \overline{R}$ = 2.114 (6.3) = 13.32 CL = \overline{R} = 6.5 [For n=5, A₂ = 0.577, D₃ = 0, D₄ = 2.114] LCL = $D_3 \overline{R}$ = 0