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Find the order and degree of the following differential equations

Answer : 

Highest order derivative is 

∴ order = 2

Power of the highest order derivative   is 1.

∴ Degree = 1
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Solve the following differential equations

Answer : The auxiliary equation is m  - 6m + 8 = 0

⇒ (m-4)(m-2) = 0

⇒ m = 2, 4

The roots are real and different

∴ Complementary function CF is Ae  + Be

∴ The general solution is y = Ae  + Be

− 6 + 8y = 0
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Solve the following differential equations

Answer : The auxiliary equation is m  - 4m + 4 = 0

⇒ (m - 2)  = 0

⇒ m 2,2

The roots are real and equal

∴ Complementary function CF is (Ax + B)e

∴ The general solution is y = (Ax + B)e

− 4 + 4y = 0
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Solve the following differential equations: 

Answer : The auxiliary equation is m  + 16 = 0

m  = -16

⇒ m = ±  = ±4i

Hence α = 0 and β = 4

∴ Complementary function CF is

e = [A cos βx + B sin βx]

CF = e [A cos 4x + B sin 4x]

= A cos 4x + B sin 4x

[∵ e = 1]

∴ The general solution is y = A cos 4x + B sin 4x
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2

dx2

2

2

2  −16
− −−−√

ax 

0x

o

Find the order and degree of the following differential equations.

Answer : The highest derivative is third order and its power is one

+ 3 + 2 = 0
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Answer : The highest derivative is third order and its power is one

∴ order : 3,

degree : 1

Find the order and degree of the following differential equations.

Answer : The highest derivative is of third order and its power is 1.

Order is 3 and degree is 1.

= 0yd
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Find the differential equation of the following

xy = c

Answer : Differentiating w.r.t 'x' we get,

x.  + y(1) = 0     [Product rule]

⇒ x  + y = 0 which is the required differentiated equation.
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Find the order and degree of the following differential equation

Answer : 

Highest order derivative is 

∴ order = 2

Power of the highest order derivative   is 1

∴ Degree = 1
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yd2

dx2

dy

dx

− 2 + 3y = 0
yd2

dx
2

dy

dx

yd
2

dx2

yd2

dx2

Find the order and degree of the following differential equation

Answer : 

Here we eliminate the radical sign.

Squaring both sides, we get

∴ order = 2, ∴ Degree = 3
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Find the order and degree of the following differential equation

+ 4x

Answer : + 4x

+ 4x

 =   + 4x

∴ order = 1, ∴ Degree = 3
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Form the differential equation by eliminating α and β from (x − α)  + (y − β)  = r2 2 2
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Answer : Given equation is (x - α)  + (y - β)  = r

Differentiating w.r.t. 'x' we get,

2 (x - α)  + (y - β)  = r

⇒ (x - α) + (y - β)  = 0....(2)

Differentiating again w.r.t. 'x' we get

1+(y-β)   = 0

⇒ 1+(y-β)  = 0

⇒ y-β =   .....(3)

Substituting this value in (2) we get

(x-α) =   ......(4)

Substituting (3) and (4) in (1) we get
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Find the differential equation of the family of all straight lines passing through the origin.

Answer : Let the equation of straight lines passing through the origin be

y = mx ..(1)

where m is the arbitrary constant

Differentiating w.r.t 'x' we get,

= m(1) ⇒   = m  .....(2)

Substituting (2) in (1) we get,
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Solve   = e + x e

Answer : Given   = e + x e = e e + e x

= e (e + x )

Separating the variables, we get e dy=(e  + x )dx

Integrating, we get ഽe dy = ഽ(e +x )dx

e = e  +   + c

dy

dx
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Solve:   = y sin 2x

Answer : Separating the variables, we get,

= sin 2x dx

Integrating both sides we get,

⇒ log y =  +c

dy

dx

dy

x

∫ = ∫ sin 2xdy

y
− cos 2x

1

Find the differential equation of the following

y = c (x − c)2
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Answer : Given equation is y = c(x-c)

⇒ y = c(x -2xc+c )....(1)

Differentiating w.r.t 'x' we get

-2c(x-c) ...(2)

(1) ÷ (2) gives

x-c = 

Substituting the value of c in (1) we get

y=

=
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⇒  + 8y = 0
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5 Marks 3 x 5 = 15

If   + 2y tan x = sin x and if y = 0 when x =   express y in terms of x.

Answer : Given differential equation is of the form

+Py = Q where

P = 2 tanx; Q = sinx

 = 2(log secx) = log sec x

∴ Integrating factor (I. F) =
= sec x

Hence the solution is

⇒ y sec x = +c

⇒ y sec x =  dx + c

⇒ y sec x =  dx + c

⇒ y sec x =  sec x dx + c

⇒ y sec x = sec x + c  ...(1)

Also its given when x =  , y = 0

∴ 0

⇒ 0 = 2+c ⇒ c = -2

∴ (1) becomes

y sec 2x = sec x-2

dy
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Suppose that the quantity demanded   and quantity supplied Q = 5 + 4p where p is the price. Find the

equilibrium price for market clearance.

= 29 − 2p − 5 +Qd
dp

dt

pd2

dt
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Answer : For market clearance, the required condition is Q = Q

⇒ 

⇒ 

⇒ 

(D −5D−6)p = –24

The auxiliary equation is

m  − 5m − 6 = 0

(m−6)(m+1) = 0

⇒ m = 6, –1

C.F = Ae + Be

= 

=   (Replace D by 0)

= 4

The general solution is p = C.F + P.I

= Ae + Be + 4

d  s
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dp

dt

pd2

dt

24 − 6p − 5 + = 0
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A manufacturing company has found that the cost C of operating and maintaining the equipment is related to the length ‘m’ of

intervals between overhauls by the equation m  + 2mC = 2 and c = 4 and when m = 2. Find the relationship between C and m.

Answer : Given m +2mc = 2

Dividing by m , we get,

This is of form  +Py = Q

where P =   and Q = 

dm = 2 log m = log m

∴ Integrating Factor (LF.) = 
= m

∴ The solution is

cm =

cm = 2m+K

Given that c = 4, when m = 2

4(2 ) = 2(2) + K ⇒ 16 - 4 = K

⇒ K=12

∴ (1) becomes

cm  = 2m+ 12

⇒ cm  = 2 (m + 6)
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