QB365 Question Bank Software Study Materials

Differential Equations Important 2,3\&5 Marks Questions With Answers (Book Back and Creative)

2 Marks

1) Find the order and degree of the following differential equations
$\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}+4 y=0$
Answer : $\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}+4 y=0$
Highest order derivative is $\frac{d^{2} y}{d x^{2}}$
\therefore order $=2$
Power of the highest order derivative $\frac{d^{2} y}{d x^{2}}$ is 1 .
\therefore Degree $=1$
2) Solve the following differential equations
$\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+8 y=0$
Answer : The auxiliary equation is $m^{2}-6 m+8=0$
$\Rightarrow(\mathrm{m}-4)(\mathrm{m}-2)=0$
$\Rightarrow \mathrm{m}=2,4$
The roots are real and different
\therefore Complementary function CF is $\mathrm{Ae}^{2 \mathrm{x}}+\mathrm{Be}^{4 \mathrm{x}}$
\therefore The general solution is $\mathrm{y}=\mathrm{Ae}^{2 \mathrm{x}}+\mathrm{Be}^{4 \mathrm{x}}$

-

-4-2
3) Solve the following differential equations
$\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=0$
Answer : The auxiliary equation is $\mathrm{m}^{2}-4 \mathrm{~m}+4=0$
$\Rightarrow(m-2)^{2}=0$
\Rightarrow m 2,2
The roots are real and equal
\therefore Complementary function $C F$ is $(A x+B) \mathrm{e}^{2 x}$
\therefore The general solution is $y=(A x+B) e^{2 x}$
4)

Solve the following differential equations: $\frac{d^{2} y}{d x^{2}}+16 y=0$
Answer : The auxiliary equation is $\mathrm{m}^{2}+16=0$
$m_{2}=-16$
$\Rightarrow \mathrm{m}_{2}= \pm \sqrt{-16}= \pm 4 \mathrm{i}$
Hence $\mathrm{a}=0$ and $\beta=4$
\therefore Complementary function CF is
$e^{a x}=[A \cos \beta x+B \sin \beta x]$
$C F=e^{0 x}[A \cos 4 x+B \sin 4 x]$
$=A \cos 4 x+B \sin 4 x$
$\left[\because \mathrm{e}^{\mathrm{o}}=1\right]$
\therefore The general solution is $\mathrm{y}=\mathrm{A} \cos 4 \mathrm{x}+\mathrm{B} \sin 4 \mathrm{x}$
5) Find the order and degree of the following differential equations.
$\frac{d^{3} y}{d x^{3}}+3\left(\frac{d y}{d x}\right)^{3}+2 \frac{d y}{d x}=0$

\therefore order: 3,
degree : 1
6) Find the order and degree of the following differential equations.
$\frac{d^{3} y}{d x^{3}}=0$
Answer : The highest derivative is of third order and its power is 1.
Order is 3 and degree is 1 .
7) Find the differential equation of the following
$x y=c^{2}$

Answer : Differentiating w.r.t 'x' we get,
$\mathrm{x} . \frac{d y}{d x}+\mathrm{y}(1)=0 \quad$ [Product rule]
$\Rightarrow \mathrm{x} \frac{d y}{d x}+\mathrm{y}=0$ which is the required differentiated equation.
8) Find the order and degree of the following differential equation
$\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+3 y=0$
Answer : $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+3 y=0$
Highest order derivative is $\frac{d^{2} y}{d x^{2}}$
\therefore order $=2$
Power of the highest order derivative $\frac{d^{2} y}{d x^{2}}$ is 1
\therefore Degree $=1$
9) Find the order and degree of the following differential equation
$\left[1+\frac{d^{2} y}{d x^{2}}\right]^{\frac{3}{2}}=a \frac{d^{2} y}{d x^{2}}$
Answer : $\left[1+\frac{d^{2} y}{d x^{2}}\right]^{\frac{3}{2}}=a \frac{d^{2} y}{d x^{2}}$
Here we eliminate the radical sign.
Squaring both sides, we get
$\left[1+\frac{d^{2} y}{d x^{2}}\right]^{\frac{3}{2}}=a^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
\therefore order $=2, \therefore$ Degree $=3$

Find the order and degree of the following differential equation
$y=2\left(\frac{d y}{d x}\right)^{2}+4 \mathrm{x} \frac{d x}{d y}$
Answer : $y=2\left(\frac{d y}{d x}\right)^{2}+4 \mathrm{x} \frac{d y}{d x}$
$y=2\left(\frac{d y}{d x}\right)^{2}+4 \mathrm{x} \frac{1}{\left(\frac{d y}{d x}\right)}$
$y\left(\frac{d y}{d x}\right)=\left(\frac{d y}{d x}\right)^{3}+4 \mathrm{x}$
\therefore order $=1, \therefore$ Degree $=3$
11) Form the differential equation by eliminating a and β from $(x-a)^{2}+(y-\beta)^{2}=r^{2}$

Answer : Given equation is $(x-a)^{2}+(y-\beta)^{2}=r^{2}$
Differentiating w.r.t. ' x ' we get,
$2(x-\alpha)^{2}+(y-\beta) \frac{d y}{d x}=r^{2}$
$\Rightarrow(\mathrm{x}-\mathrm{a})+(\mathrm{y}-\beta) \frac{d y}{d x}=0 \ldots$.(2)
Differentiating again w.r.t. ' x ' we get
$1+(\mathrm{y}-\beta) \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x} \cdot \frac{d y}{d x}=0$
$\Rightarrow 1+(\mathrm{y}-\beta) \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$
$\Rightarrow \mathrm{y}-\beta=\frac{-1\left(1+\left(\frac{d y}{d x}\right)^{2}\right)}{\frac{d^{2} y}{d x^{2}}}$.
Substituting this value in (2) we get
$(\mathrm{x}-\mathrm{a})=\left(\frac{1+\left(\frac{d y}{d x}\right)^{2} \frac{d y}{d x}}{\frac{d^{2} y}{d x^{2}}}\right) \ldots \ldots$ (4)
Substituting (3) and (4) in (1) we get
$\frac{\left\{1+\left(\frac{d y}{d x}\right)^{2}\left(\frac{d y}{d x}\right)^{2}\right\}}{\left(\frac{d^{2} y}{d x^{2}}\right)^{2}}+\frac{\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{2}}{\left(\frac{d^{2} y}{d x^{2}}\right)^{2}}$
$=\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
$\Rightarrow\left[1+\left(\frac{d y}{d x}\right)^{2}\right]\left[\left(\frac{d y}{d x}\right)^{2}+1\right]=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)$
$\Rightarrow\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}$
$=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
12) Find the differential equation of the family of all straight lines passing through the origin.

Answer : Let the equation of straight lines passing through the origin be
$\mathrm{y}=\mathrm{mx} . .(1)$
where m is the arbitrary constant
Differentiating w.r.t 'x' we get,
$\frac{d y}{d x}=\mathrm{m}(1) \Rightarrow \frac{d y}{d x}=\mathrm{m}$
Substituting (2) in (1) we get,
$y=x \frac{d y}{d x}$.
13) Solve $\frac{d y}{d x}=\mathrm{e}^{\mathrm{x}-\mathrm{y}}+\mathrm{x}^{2} \mathrm{e}^{-\mathrm{y}}$

Answer: Given $\frac{d y}{d x}=\mathrm{e}^{\mathrm{x}-\mathrm{y}}+\mathrm{x}^{2} \mathrm{e}^{-\mathrm{y}}=\mathrm{e}^{-\mathrm{y}} \mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{y}} \mathrm{X}^{2}$
$=e^{-\mathrm{y}}\left(\mathrm{e}^{\mathrm{x}}+\mathrm{x}^{2}\right)$
Separating the variables, we get $e^{y} d y=\left(e^{x}+x^{2}\right) d x$
Integrating, we get $\int e^{y} d y=\int\left(e^{x}+x^{2}\right) d x$
$\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{\mathrm{x}}+\frac{x^{3}}{3}+\mathrm{c}$
14) Solve: $\frac{d y}{d x}=\mathrm{y} \sin 2 \mathrm{x}$

Answer : Separating the variables, we get,
$\frac{d y}{x}=\sin 2 \mathrm{xdx}$
Integrating both sides we get,
$\int \frac{d y}{y}=\int \sin 2 x$
$\Rightarrow \log \mathrm{y}=\frac{-\cos 2 x}{1}+\mathrm{c}$
15) Find the differential equation of the following
$\mathrm{y}=\mathrm{c}(\mathrm{x}-\mathrm{c})^{2}$

Answer: Given equation is $y=c(x-c)^{2}$
$\Rightarrow \mathrm{y}=\mathrm{c}\left(\mathrm{x}^{2}-2 \mathrm{xc}+\mathrm{c}^{2}\right)$.
Differentiating w.r.t ' x ' we get
$\frac{d y}{d x}-2 \mathrm{c}(\mathrm{x}-\mathrm{c}) \ldots$ (2)
$(1) \div(2)$ gives
$\frac{y}{\frac{d y}{d x}}=\frac{c(x-c)^{2}}{2 c(x-c)}=\frac{y}{\frac{d y}{d x}}=\frac{x-c}{2}$
$\mathrm{x}-\mathrm{c}=\frac{2 y}{\frac{d y}{d x}} \Rightarrow c=x-\frac{2 y}{\frac{d y}{d x}}$
Substituting the value of c in (1) we get
$\mathrm{y}=\left(x-\frac{2 y}{\frac{d y}{d x}}\right)\left(x-x+\frac{2 y}{\frac{d y}{d x}}\right)^{2}$
$=\left(x-\frac{2 y}{\frac{d y}{d x}}\right)\left(\frac{4 y^{2}}{\left(\frac{d y}{d x}\right)^{2}}\right)$
$\mathrm{y}=\left(\frac{x \frac{d y}{d x}-2 y}{\frac{d y}{d x}}\right)\left(\frac{4 y^{2}}{\left(\frac{d y}{d x}\right)^{2}}\right)$
$\Rightarrow y\left(\frac{d y}{d x}\right)^{3}=4 y^{2}\left(x \frac{d y}{d x}-2 y\right)$
$\Rightarrow\left(\frac{d y}{d x}\right)^{3}=4 y\left(x \frac{d y}{d x}-2 y\right)$
$\Rightarrow\left(\frac{d y}{d x}\right)^{3}=4 x y\left(\frac{d y}{d x}\right)-8 y^{2}$
$\Rightarrow\left(\frac{d y}{d x}\right)^{3}-4 x y\left(\frac{d y}{d x}\right)+8 \mathrm{y}^{2}=0$

5 Marks

16) If $\frac{d y}{d x}+2 \mathrm{y} \tan \mathrm{x}=\sin \mathrm{x}$ and if $\mathrm{y}=0$ when $\mathrm{x}=\frac{\pi}{3}$ express y in terms of x

Answer : Given differential equation is of the form
$\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$ where
$P=2 \tan x ; Q=\sin x$
$\int p d x=\int 2 \tan x d x=2(\log \sec \mathrm{x})=\log \sec ^{2} \mathrm{x}$
\therefore Integrating factor (I. F) $=e^{\int p d x}=e^{\log \quad \sec ^{2 x}}$
$=\sec ^{2} \mathrm{x}$
Hence the solution is
$y e^{\int p d x}=\int Q . e^{\int p d x} d x+c$
$\Rightarrow \mathrm{y} \sec ^{2} \mathrm{x}=\int \sin x \sec ^{2} x d x+\mathrm{c}$
$\Rightarrow \mathrm{y} \sec ^{2} \mathrm{x}=\int \sin x \cdot \frac{1}{\cos ^{2} x} \mathrm{dx}+\mathrm{c}$
$\Rightarrow \mathrm{y} \sec ^{2} \mathrm{x}=\int \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} \mathrm{dx}+\mathrm{c}$
$\Rightarrow \mathrm{y} \sec ^{2} \mathrm{x}=\int \tan x \sec \mathrm{xdx}+\mathrm{c}$
$\Rightarrow \mathrm{y} \mathrm{sec}{ }^{2} \mathrm{x}=\sec \mathrm{x}+\mathrm{c} \ldots$ (1)
Also its given when $\mathrm{x}=\frac{\pi}{3}, \mathrm{y}=0$
$\therefore \mathrm{O}\left(\sec ^{2} \frac{\pi}{3}\right)=\sec \frac{\pi}{3}+c$
$\Rightarrow 0=2+c \Rightarrow c=-2$
\therefore (1) becomes
$y \sec 2 x=\sec x-2$
17) Suppose that the quantity demanded $Q_{d}=29-2 p-5 \frac{d p}{d t}+\frac{d^{2} p}{d t^{2}}$ and quantity supplied $\mathrm{Q}_{\mathrm{s}}=5+4 \mathrm{p}$ where p is the price. Find the equilibrium price for market clearance.

Answer : For market clearance, the required condition is $\mathrm{Q}_{\mathrm{d}}=\mathrm{Q}_{\mathrm{s}}$
$\Rightarrow 29-2 p-5 \frac{d p}{d t}+\frac{d^{2} p}{d t}=5+4 p$
$\Rightarrow 24-6 p-5 \frac{d p}{d t}+\frac{d^{2} p}{d t^{2}}=0$
$\Rightarrow \frac{d^{2} p}{d t^{2}}+5 \frac{d p}{d t}-6 p=-24$
($\left.D^{2}-5 D-6\right) p=-24$
The auxiliary equation is
$m^{2}-5 m-6=0$
$(\mathrm{m}-6)(\mathrm{m}+1)=0$
$\Rightarrow \mathrm{m}=6,-1$
C.F $=\mathrm{Ae}^{6 \mathrm{t}}+\mathrm{Be}^{-\mathrm{t}}$
$P . I=\frac{1}{\phi(D)} f(x)$
$=\frac{1}{D^{2}-5 D-6}(-24) e^{0 t}$
$=\frac{-24}{-6}($ Replace D by 0$)$
$=4$
The general solution is $\mathrm{p}=\mathrm{C} . \mathrm{F}+\mathrm{P} . \mathrm{I}$
$=\mathrm{Ae}^{6 t}+\mathrm{Be}^{-\mathrm{t}}+4$
18) A manufacturing company has found that the cost C of operating and maintaining the equipment is related to the length ' m ' of intervals between overhauls by the equation $\mathrm{m}^{2} \frac{d C}{d m}+2 \mathrm{mC}=2$ and $\mathrm{c}=4$ and when $\mathrm{m}=2$. Find the relationship between C and m .

Answer: Given $\mathrm{m}^{2} \frac{d c}{d m}+2 \mathrm{mc}=2$
Dividing by m^{2}, we get,
$\frac{d C}{d m}+\frac{2 c}{m}=\frac{2}{m^{2}}$
This is of form $\frac{d y}{d x}+\mathrm{Py}=\mathrm{Q}$
where $\mathrm{P}=\frac{2}{m}$ and $\mathrm{Q}=\frac{2}{m}$
$\int p d m=\int \frac{2}{m} \mathrm{dm}=2 \log \mathrm{~m}=\log \mathrm{m}^{2}$
\therefore Integrating Factor (LF.) $=e^{\int P d m}=e^{\operatorname{logm}^{2}}$
$=\mathrm{m}^{2}$
\therefore The solution is
$c e^{\int P d m}=\int Q e^{\int P d m} m+c . K$
$\mathrm{cm}^{2}=\int \frac{2}{m^{2}} m^{2} d m+K=\int 2 d m+c K$
$\mathrm{cm}^{2}=2 \mathrm{~m}+\mathrm{K}$
Given that $\mathrm{c}=4$, when $\mathrm{m}=2$
$4\left(2^{2}\right)=2(2)+K \Rightarrow 16-4=K$
$\Rightarrow \mathrm{K}=12$
\therefore (1) becomes
$\mathrm{cm}^{2}=2 \mathrm{~m}+12$
$\Rightarrow \mathrm{cm}^{2}=2(\mathrm{~m}+6)$

