QB365 Question Bank Software Study Materials

Sampling Techniques and Statistical Inference 50 Important 1 Marks Questions With Answers (Book Back and Creative)

12th Standard

Business Maths and Statistics

Total Marks: 50

Multiple Choice Question

 $50 \times 1 = 50$

1)	A may be finite or infinite according as the number of observations or items in it is finite or infinite.
	(a) Population (b) census (c) parameter (d) none of these
2)	A of statistical individuals in a population is called a sample.
	(a) Infinite set (b) finite subset (c) finite set (d) entire set
3)	A finite subset of statistical individuals in a population is called
	(a) a sample (b) a population (c) universe (d) census
4)	Any statistical measure computed from sample data is known as
	(a) parameter (b) statistic (c) infinite measure (d) uncountable measure
5)	Ais one where each item in the universe has an equal chance of known opportunity of being selected.
	(a) Parameter (b) random sample (c) statistic (d) entire data
6)	A random sample is a sample selected in such a way that every item in the population has an equal chance of being included
	(a) Harper (b) Fisher (c) Karl Pearson (d) Dr. Yates
7)	Which one of the following is probability sampling
	(a) purposive sampling (b) judgment sampling (c) simple random sampling (d) Convenience sampling
8)	In simple random sampling from a population of N units, the probability of drawing any unit at the first draw is
	(a) $\frac{n}{N}$ (b) $\frac{1}{N}$ (c) $\frac{N}{n}$ (d) 1
9)	In the heterogeneous groups are divided into homogeneous groups.
	(a) Non-probability sample (b) a simple random sample (c) a stratified random sample (d) systematic random sample
10)	Errors in sampling are of
	(a) Two types (b) three types (c) four types (d) five types
11)	The method of obtaining the most likely value of the population parameter using statistic is called
	(a) estimation (b) estimator (c) biased estimate (d) standard error.
12)	An estimator is a sample statistic used to estimate a
	(a) population parameter (b) biased estimate (c) sample size (d) census
13)	is a relative property, which states that one estimator is efficient relative to another.
	(a) efficiency (b) sufficiency (c) unbiased (d) consistency
14)	If probability $P[\hat{ heta}- heta as n o\infty, for any positive arepsilon then \hat{ heta} is said to estimator of heta.$
	(a) efficient (b) sufficient (c) unbiased (d) consistent

15 / Ar	n estimator is said to be if it contains all the information in the data about the parameter it estimates. (a) efficient (b) sufficient (c) unbiased (d) consistent
16)	An estimate of a population parameter given by two numbers between which the parameter would be expected to lie is called aninterval estimate of the parameter.
	(a) point estimate (b) interval estimation (c) standard error (d) confidence
17)	A is a statement or an assertion about the population parameter.
	(a) hypothesis (b) statistic (c) sample (d) census
18)	Type I error is
	(a) Accept H ₀ when it is true (b) Accept H ₀ when it is false (c) Reject H ₀ when it is true (d) Reject H ₀ when it is false.
19)	Type II error is
	 (a) Accept H₀ when it is wrong (b) Accept H₀ when it is true (c) Reject H₀ when it is true (d) Reject H₀ when it is false
20)	The standard error of sample mean is
	(a) $\frac{\sigma}{\sqrt{2n}}$ (b) $\frac{\sigma}{n}$ (c) $\frac{\sigma^2}{\sqrt{n}}$
21)	The number of ways in which one can select 2 customers out of 10 customers is
	(a) 90 (b) 60 (c) 45 (d) 50
22)	The standard error of the sample mean is
	(a) Type I error(b) Type II error(c) Standard deviation of the sampling distribution of the mean(d) Variance of the sampling distribution of the mean.
23)	Which of the following statements is true?
	(a) point estimate gives a range of value (b) sampling is done only to estimate a statistic
	(c) sampling is done to estimate the population parameter (d) sampling is not possible for an infinite population
24)	If a random sample of size 64 is taken from a population whose standard deviation is 32, then the standard error of the mean is
	(a) 0.5 (b) 2 (c) 4 (d) 32
25)	The mean I.Q. of a sample of 1600 children was 99. It is likely that this was a r.sample from a population with mean I.Q. 100 and S.D 15 ² Then the value of Z is
	(a) -2.667 (b) 2.667 (c) 1.96 (d) 2.58
26)	Out of 1000 T.V viewers, 320 watched a particular programme. Then the standard error is
	(a) -0.147 (b) 0.147 (c) 0.0147 (d) -0.0147
27)	A sample of 100 students are drawn from 1550 student of a school. The mean weight and variance of the sample are 67.45 kg and 9 kg. Then the standard error is
	(a) .3 (b) .9 (c) .6745 (d) 6.745
28)	The point estimate mean of the following data is 21.1, 25.0, 20.0, 16.0, 12.0, 10.0, 17.0, 18.0, 13.0,11.0
	(a) 16.3 (b) 13.6 (c) 21.21 (d) 212:10
29)	The point estimate variance of 21, 25, 20, 16, 12, 10, 17, 18, 13 and 11 is
	(a) 23.5 (b) 2.35 (c) 4.85 (d) 48.5

30)	The point estimate means of 6.33, 6.37, 6.36, 6.32, 6.37 is
	(a) 6.33 (b) 6.36 (c) 6.35 (d) 6.37
31)	The point estimate variance of 6.33, 6.37, 6.36, 6.32, 6.37 is
	(a) 0.0022 (b) 0.00055 (c) 0.0055 (d) 0.055
32)	There are branches of statistical inference.
	(a) 1 (b) 2 (c) 3 (d) 4
33)	An is a specific observed value of a statistic
	(a) Estimation (b) Estimate (c) Estimate (d) Testing of hypothesis
34)	If α is the level of significance, then the confidence Co-efficient is
	(a) α (b) 1 (c) 1- α (d) 1+ α
35)	Any hypothesis which is complementary to the null hypothesis is hypothesis.
	(a) Null (b) Alternative (c) Statistical (d) testing
36)	The Z value that is used to establish in 95% confidence interval for the estimation of population parameter is
	(a) 1.28 (b) 1.65 (c) 1.96 (d) 2.58
37)	Probability of rejecting null hypothesis when it is true is
	(a) Type I error (b) Type II error (c) Sampling error (d) Standard error
38)	Choose the odd man out
	(a) Point estimate gives a range of values (b) Sampling is done only to estimate a statistic
	(c) Sampling is done to estimate the population parameter. (d) Sampling is not possible for an infinite population.
39)	The number of ways in which one can select 2 customers out of 10 customers is
	(a) 90 (b) 60 (c) 45 (d) 50
40)	For a systematic random sampling, the sample interval k =
	(a) $\frac{N}{n}$ (b) $\frac{n}{N}$ (c) $\frac{1}{n}$ (d) $\frac{1}{N}$
41)	In a systematic random sampling, if we want to select a sample of 10 students from a class of 100 students then k =
	(a) 10 (b) $\frac{1}{10}$ (c) 100 (d) $\frac{1}{100}$
42)	The critical region at 5% level is
	(a) $ Z \ge 1.96$ (b) $ Z < 1.96$ (c) $ Z \ge 2.58$ (d) $ Z < 2.58$
43)	An estimate of a population parameter given by a single number is
	(a) Point estimation (b) Interval estimate (c) Consistency (d) None of these
44)	Standard error of the sample mean is
	(a) σ^2 (b) $\frac{\sigma}{n}$ (c) $\frac{\sigma}{\sqrt{n}}$ (d) $\frac{\sqrt{n}}{\sigma}$
45)	Critical region of a test is
	(a) rejection region (b) acceptance region (c) sample space (d) subset of the sample space
46)	When H, is a one sided (tight) alternative hypothesis, the critical region is determined by
	(a) Both right and left tails (b) Neither right nor left tail (c) right tail (d) left tail

Critical value at 5% level of significance for two tailed test is ______

(a) 1.645 (b) 2.33 (c) 2.58 **(d) 1.96**

For listing $H_0, \mu=\mu_0$ against $H_1=\mu<\mu_0$ what is the critical value at lpha=0.01 _____

(a) 1.645 (b) -1.645 (c) -2.33 (d) 2.33

The Hypothesis testing problem $H_0:\mu_0$ = 45 against HI: μ 0< 45 be categorized as _____

(a) left tailed (b) right tailed (c) two tailed (d) None of these

What is the standard error of the sample proportion under H_0 ?

(a) $\sqrt{\frac{PQ}{n}}$ (b) $\sqrt{\frac{pq}{n}}$ (c) $\frac{PQ}{n}$ (d) $\frac{pq}{n}$