QB365 Question Bank Software Study Materials

Physical and Chemical Equilibrium Important 2 Marks Questions With Answers (Book Back and Creative)

11th Standard
Chemistry

2 Marks

1) Consider the following reaction
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \rightleftharpoons[\mathrm{Fe}(\mathrm{SCN})]^{2+}(\mathrm{aq})$
A solution is made with initial $\mathrm{Fe}^{3+}, \mathrm{SCN}^{-}$concentration of $1 \times 10^{-3} \mathrm{M}$ and $8 \times 10^{-4} \mathrm{M}$ respectively. At equilibrium $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$ concentration is $2 \times 10^{-4} \mathrm{M}$. Calculate the value of equilibrium constant.

Answer :

	Fe^{3+}	SCN^{-}	$\left[\mathrm{Fe}(\mathrm{SCN})^{2+}\right.$
Initial concentration (M)	$1 \times 10^{-3}(10 \times$ $\left.10^{-4}\right)$	$8 \times 10^{-}$ 4	-
Reacted	2×10^{-4}	2×10^{-4}	-
Equilibrium concentration	8×10^{-4}	6×10^{-4}	2×10^{-4}

$K_{e q}=\frac{[\mathrm{Fe}(S C N)]^{2+}}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{SCN}^{-}\right]}$
$=\frac{2 \times 10^{-4} M}{8 \times 10^{-4} M \times 6 \times 10^{-4} M}$
$=0.0416 \times 10^{4}$
$\mathrm{K}_{\mathrm{eq}}=41.6 \times 10^{2} \mathrm{M}^{-1}$
2) The atmospheric oxidation of NO
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
was studied with initial pressure of 1 atm of NO and 1 atm of O_{2}. At equilibrium, partial pressure of oxygen is 0.52 atm calculate K_{p} of the reaction.

Answer : $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

	NO_{2}	O_{2}	NO_{2}
Initila Partial Pressure	1	1	-
Reacted	0.96	0.96	-
Equilibrium Partial Pressure	0.04	0.52	0.96

$K_{p}=\frac{P_{\mathrm{NO}_{2}}^{2}}{P_{\mathrm{NO}_{2}}^{2} \cdot P_{o_{2}}}$
$=\frac{0.96 \times 0.96}{0.04 \times 0.04 \times 0.52}$
$=11.07 \times 10^{2}(\mathrm{~atm})^{-1}$
$\mathrm{K}_{\mathrm{eq}}=41.6 \times 10^{2} \mathrm{M}^{-1}$.
3) If there is no change in concentration, why is the equilibrium state considered dynamic?

Answer : This condition is not static and is dynamic, because both the forward and reverse reactions are still occurring with the same rate. No macroscopic change is observed.
4) For a given reaction at a particular temperature, the equilibrium constant has constant value. Is the value of Q also constant? Explain.

Answer : The equilibrium constant is a constant and it is for equilibrium condition. But ' Q ', the reaction quotient is not a constant as it is for non - equilibrium condition. ' Q ' is the ratio of the product of active masses of a reaction products raised to the respective stoichiometric coefficients in the balanced chemical equation to that of the reactants, under non - equilibrium conditions.
i) If $Q=K_{c}$; it is equilibrium
ii) If $Q>K_{c}$.; the reaction will proceed in reverse direction
iii) If $\mathrm{Q}<\mathrm{K}_{\mathrm{C}}$; the reaction will proceed in forward direction
5) Consider the following reactions,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
In each of the above reaction find out whether you have to increase (or) decrease the volume to increase the yield of the product.
Answer : $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}$
$\mathrm{K}_{\mathrm{c}}=\frac{4 x^{2}}{(a-x)(b-x)}$
This expression doesn't involve, V. So, increase or decrease of volume will not affect the equilibrium and hence the yield of the product.
6) State law of mass action.

Answer : At any instant, the rate of a chemical reaction, at a given temperature is directly proportional to the product of the active masses of the reactants at that instant.
Rate of the reaction α [Reactant] ${ }^{\mathrm{x}}$
7) Write the K_{p} and K_{c} for the following reactions
(i) $2 \mathrm{SO}_{2}$ (g) $+\mathrm{O}_{2} \mathrm{~g} \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
(ii) $2 \mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{CO} 2(\mathrm{~g})+\mathrm{C}(\mathrm{s})$

Answer : (i) $K_{C}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}, K_{P}=\frac{\mathrm{P}^{2} \mathrm{SO}_{3}}{P^{2} \mathrm{SO}_{2} \cdot \mathrm{po}_{2}}$
(ii) $K_{C}=\frac{\left[\mathrm{CO}_{2}\right]}{[C O]^{-2}}, K_{P}=\frac{p_{\mathrm{CO}_{2}}}{P^{2} C O}$
8) Consider the following reaction
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
In the above reaction find out whether you have to increase (or) decrease the volume to increase the yield of the product.
Answer : $\mathrm{CaCO}_{3} \rightleftharpoons \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
(Lx) (x) (x)
$\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right]$
$\mathrm{K}_{\mathrm{c}}=\frac{x}{\mathrm{~V}}$
So, $K_{c} \propto \frac{1}{V}$. If V increases K_{c} wil decrease; As K_{c} is a constant x will increase and hence the yield of the product will increase. Similarly if V decreases the yield of the product will also decrease.
9) Consider the following reaction
$\mathrm{S}(\mathrm{s})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SF}_{6}(\mathrm{~g})$
In the above reaction find out whether you have to increase (or) decrease the volume to increase the yield of the product.
Answer :

$$
\mathrm{S}(\mathrm{~s})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SF}_{6}(\mathrm{~g})
$$

$$
(\mathrm{a}-3 x) \quad x
$$

$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{SF}_{6}\right]}{\lceil\mathrm{F},\rceil^{3}}$
$\mathrm{K}_{\mathrm{c}}=\frac{\frac{x}{\mathrm{~V}}}{\left(\frac{\mathrm{a}-3 x}{\mathrm{~V}}\right)^{3}}=\frac{x \cdot \mathrm{~V}^{3}}{\mathrm{~V} \cdot(\mathrm{a}-3 x)^{3}}$
$\mathrm{K}_{\mathrm{c}}=\frac{x \cdot \mathrm{~V}^{2}}{(\mathrm{a}-3 x)^{3}}$
So, $K_{c} \propto V^{2}$. IfV increases K_{c} will also increase. As K_{c} is a constant will decrease and hence the yield of the product will decrease. Similarly, if V decreases the yield of the product will increase.
10) Consider the following reactions,
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
In the above reaction find out whether you have to increase (or) decrease the volume to increase the yield of the product.
Answer: $\underset{(\mathrm{L} x)}{\mathrm{CaCO}_{3}} \rightleftharpoons \underset{(x)}{\rightleftharpoons} \mathrm{CaO}_{(\mathrm{s})}+\underset{(x)}{\mathrm{CO}_{2(\mathrm{~g})}}$
$\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right]$
$K_{c}=\frac{x}{V}$
So, $K_{c} \propto \frac{1}{V}$ If V increases K_{c} wil decrease; As K_{c} is a constant x will increase and hence the yield of the product will increase. Similarly if V decreases the yield of the product will also decrease.
11)

Consider the following reactions,
$\mathrm{S}(\mathrm{s})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SF}_{6}(\mathrm{~g})$
In the above reaction find out whether you have to increase (or) decrease the volume to increase the yield of the product.

Answer: $\mathrm{S}(\mathrm{s})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SF}_{6}(\mathrm{~g})$
$K_{c}=\frac{\left[S_{6}\right]}{\left[F_{7}\right]_{x}^{3}}$
$\mathrm{K}_{\mathrm{c}}=\frac{\frac{x}{\mathrm{~V}}}{\left(\frac{\mathrm{a}-\mathrm{zx}}{\mathrm{V}}\right)^{3}}=\frac{x \cdot \mathrm{~V}^{3}}{\mathrm{~V} \cdot(\mathrm{a}-3 x)^{3}}$
$\mathrm{K}_{\mathrm{c}}=\frac{x \cdot \mathrm{~V}^{2}}{(\mathrm{a}-3 x)^{3}}$
So, $\mathrm{K}_{\mathrm{c}} \alpha \mathrm{V}^{2}$. IfV increases K_{c} will also increase. As K_{c} is a constant rwill decrease and hence the yield of the product will decrease. Similarly if V decreases the yield of the product will increase.
12) For the reaction, $A_{(g)}+B_{(s)} \rightleftharpoons C_{(g)}+D_{(g)} \mathrm{K}_{\mathrm{c}}=50 \mathrm{~mol} \mathrm{lit}^{-1}$ at $127^{\circ} \mathrm{C}$. Calculate K_{p}.

Answer : $\Delta n=2-1=1$
$K_{P}=(R T)^{\Delta n}$
$\mathrm{K}_{\mathrm{p}} .50 \times 0.082 \times 400 \mathrm{~K}$
$K_{p}=1640 \mathrm{atms}$
13) "Rate of Melting = Rate of freezing"

When is the above condition achieved? Explain with an example
Answer : Let us consider the melting of ice in a closed container at 273 K . In the process the total number of water molecules leaving from and returning to the solid phase at any instant are equal.

If some ice-cubes and water are placed in a thermos flask (at 273 K and 1 atm pressure), then there will be no change in the mass of ice and water. At equilibrium

Rate of melting of ice = Rate of freezing of water
$\mathrm{H}_{2} \mathrm{O}(\mathrm{S}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(1)$
The temperature at which the solid and liquid phases of a substance are at equilibrium is called the melting point or freezing point of that substance.
14) When does the rate of backward reaction increase? What is its consequence?
$A+B \rightleftharpoons C+D$

Answer : (i) Initially only A and B are present. Soon, a few molecules of the products C and D are formed by the forward reaction.
(ii) As the concentration of the products increases, more products collide and react in the backward direction.
(iii) This leads to an increase in the rate of backward reaction. As the rate of reverse reaction increases, the rate of the forward reaction decreases.
(iv) Eventually, the rate of both reactions becomes equal

15)
"At constant volume addition of inert gas has no effect on equilibrium" - Justify
Answer: When an inert gas is added to an equilibrium system at constant volume, the total number of moles of gases present in the container increases, that is, the total pressure of gases increases the partial pressure of the reactants and the products are unchanged. Hence at constant volume addition of inert gas has no effect on equilibrium.
16) Following data is given for the reason,
$\mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~s})}$
$\Delta_{\mathrm{f}} \mathrm{H}^{0}\left[\mathrm{CaO}_{(\mathrm{s})}\right]=-650.0 \mathrm{~kJ}$ mol-1
$\Delta_{\mathrm{f}} \mathrm{H}^{0}\left[\mathrm{CaO}_{2(\mathrm{~g})}\right]=-395.9 \mathrm{~kJ}$ mol-1
$\Delta_{\mathrm{f}} \mathrm{H}^{0}\left[\mathrm{CaCO}_{3(\mathrm{~s})}\right]=-1206.9 \mathrm{~kJ} \mathrm{~mol}-1$
Predict the effect of temperature on the equilibrium constant of the abo e reaction

Answer: $\mathrm{CaCO}_{3(\mathrm{~s})} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~s})}$
$\Delta_{\mathrm{f}} \mathrm{H}^{0}=\Delta_{\mathrm{f}} \mathrm{H}^{0}\left[\mathrm{CaO}_{(\mathrm{s})}\right]+\Delta_{\mathrm{f}} \mathrm{H}^{0}\left[\mathrm{CaO}_{2(\mathrm{~g})}\right)-\Delta_{\mathrm{f}} \mathrm{H}^{0}\left[\mathrm{CaCO}_{3(\mathrm{~s})}\right]$
$\Delta_{\mathrm{f}} \mathrm{H}^{0}=-650+(395.9)-(-1206.9)$
$=+161 \mathrm{KJ} \mathrm{mol}^{-1}$
Because AH value is positive, so the reaction is endothermic. Hence, according to Le-Chatelier's principle, reaction will proceed in forward direction on increasing temperature.
17) Explain about the equilibrium involving dissolution of solid in liquid with suitable example.

Answer: When sugar is added to water at a particular temperature, it dissolves to form sugar solution. When more sugar is added to that solution, a particular stage sugar remains as solid and results in the formation of saturated solution. Here a dynamic equilibrium is established between the solute molecules in the solid phase and in the solution phase.

Sugar $_{\text {(solid) }} \rightarrow$ Suga $_{\text {(solution) }}$

What is meant by active mass? Give its unit.
Answer : The active mass represents the molar concentration of the reactants (or) products.
Active mass $=\frac{n}{v}=\frac{\text { number of moles }}{\text { volume in litre }}$
unit of active mass $=\mathrm{mol} \mathrm{dm}^{-3}$ (or) $\mathrm{mol} \mathrm{L}^{-1}$

Show that $K_{P}=K_{C}$ with two examples
Answer : $K_{P}=K_{c}(R T)^{\prime} \Delta n_{g}$.If $\Delta n_{g}=0, K_{p}=K_{c}$.

Examples:

(i) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
$\Delta \mathrm{n}_{\mathrm{g}}=2-2=0 \mathrm{~g}$
(ii) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
$\Delta \mathrm{n}_{\mathrm{g}}=2-2=0$
When will be $K_{P}<K_{C}$? Give two example

Answer: When $\Delta \mathrm{n}_{\mathrm{g}}=-\mathrm{ve}, \mathrm{K}_{\mathrm{P}}<\mathrm{K}_{\mathrm{C}}$
$K_{P}=K_{C} \cdot\left(R T^{\mid \Delta n_{g}}\right.$. If $K_{P}=K_{C} \cdot(R T)^{-v e}$
$\mathrm{K}_{\mathrm{P}}<\mathrm{K}_{\mathrm{C}}$.
Examples:
$2 \mathrm{H}_{2}+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{n}_{\mathrm{g}}=2-3=-1$
$\mathrm{K}_{\mathrm{P}} \mathrm{x},=\mathrm{K}_{\mathrm{c}}{ }^{\prime} \cdot \mathrm{RT}^{-1}$
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
$\Delta \mathrm{n}_{\mathrm{g}}=2-/ 3=-1 \mathrm{~K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}} .(\mathrm{RT})^{-1}$
$\therefore \mathrm{K} \mathrm{PC}$
21) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}$ at 1000 K . What is the Kc for this reaction? Predict the extent of this reaction.

Answer : $2 \mathrm{CO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{CO}_{2}(g) 2 \mathrm{CO}_{2}(g)$
$\mathrm{K}_{\mathrm{C}}=2.2 \times 10^{22}$
$\mathrm{K}_{\mathrm{C}}>10^{3}$ So [Products] \gg [Reactants]
Reaction nearly goes to completion and forward reaction is favoured.

Explain about the effect of catalyst in an equilibrium reaction?
Answer : Addition of catalyst does not affect the state of equilibrium. The catalyst increases the rate of both the forward and reverse reactions to the same extent. Hence it does not change the equilibrium composition of the reaction mixture.
23) Predict which of the following will have appreciable concentration of reactions and products.
(a) $\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}(\mathrm{g}) ; \mathrm{K}_{\mathrm{C}}=5 \times 10^{-39}$
(b) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NOCI}(\mathrm{g}) ; \mathrm{K}_{\mathrm{C}}=3.7 \times 108$
(c) $\mathrm{CI}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) ; \mathrm{K}_{\mathrm{C}}=1.8$

Answer : Following conclusion can be drawn from the values of $\mathrm{K}_{\mathrm{c}^{-}}$
(a) Since the value of K_{C}, is very small, this means that the molar concentration of the products is very small as compared to that of the reactants.
(b) Since the value of K_{C} is quite large, this means that the molar concentration of the products is very large as compared to that of the reactants.
(c) Since the value of K_{C} is 1.8 , this means that both the products and reactants have appreciable concentrations.
24) What is the equilibrium constant K_{4} in term of $\mathrm{K}_{1} \mathrm{~K}_{2}$ and K_{3} for the following equilibria?

Answer : $\mathrm{A} \stackrel{\mathrm{K}_{1}}{\rightleftharpoons} \mathrm{~B} ; \quad \mathrm{B} \stackrel{\mathrm{K}_{2}}{\rightleftharpoons} \mathrm{C} ; \quad \mathrm{C} \stackrel{\mathrm{K}_{3}}{\rightleftharpoons} \mathrm{D} ; \quad \mathrm{A} \stackrel{\mathrm{K}_{4}}{\rightleftharpoons} \mathrm{D}$
$K_{4}=K_{1} \times K_{2} \times K_{3}$
In an equilibrium, the concentration of a pure solid or liquid is always a constant. Why?
Answer : A pure solid always has the same concentration at a given temperature, as it does not expand to fill its container. i.e. it has same number of moles L^{-1} of its volume.

Therefore, the concentration of a pure solid is a constant.
This holds good for pure liquids also.

What do you mean by extent of a reaction?

Answer : The value of equilibrium constant, K_{c} tells us the extent of a reaction, i.e., it indicates how far the reaction has proceeded towards product formation at a given temperature.

How would you get the units of K_{c} and K_{p} for an equilibrium ?
Answer : (i) $K_{c}=[M]^{\Delta n_{g}}($ or $)\left(\operatorname{mol} L^{-1}\right)^{\Delta n_{g}}$
(ii) $K_{n}=[\text { Pressure unit }]^{\Delta n_{g}}$ (or)
$(\mathrm{atm})^{\Delta n_{g}}$
$(b a r)^{\Delta n_{g}}$
If: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \mathrm{K}_{1}$
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g}) ; \mathrm{K}_{2}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \mathrm{K}_{3}$
then what is the value for K_{4} for the following equilibrium in terms of $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3} ?
Answer : $2 \mathrm{NH}_{3}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \mathrm{K}_{4}$
The final eqiation can be obtained as follows: $2+3 \times 3-1$
$\therefore \mathrm{K}_{4}=\frac{\mathrm{K}_{2} \times \mathrm{K}_{3}^{3}}{\mathrm{~K}}$
29) The value of K_{c} for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$ at 717 K is 4 g . If at a particular instant $\left[\mathrm{H}_{2}\right],\left[\mathrm{I}_{2}\right]$, \& [HI$]$ are $0.2 \mathrm{~mol} \mathrm{~L}^{-}$ ${ }^{1}, 0.2 \mathrm{~mol} \mathrm{~L}^{-1}$ and $0.6 \mathrm{~mol} \mathrm{~L}^{-1}$ respectively, predict the direction of the reaction.

Answer : $\mathrm{Q}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{0.6 \times 0.6}{0.2 \times 0.2}=9$
Since $Q<K_{c}$; the reaction will proceed in the forward direction.
30) The value of K_{c} for the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ is 0.21 at 373 K , At a given time $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ and $\left[\mathrm{NO}_{2}\right]$ are $0.125 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ and $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ respectively. Predict the direction of the reaction.

Answer : $\mathrm{Q}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{0.5 \times 0.5}{0.125}=2$
As $\mathrm{Q}>\mathrm{K}_{\mathrm{c}}$; the reaction will proceed in the reverse direction until it reaches 0.21 .

