QB365 Question Bank Software Study Materials

Binomial Theorem, Sequences and Series Important 2 Marks Questions With Answers (Book Back and Creative)

11th Standard

Maths

Total Marks: 60

2 Marks

 $30 \times 2 = 60$

Show that the sum of $(m + n)^{th}$ and $(m - n)^{th}$ term of an A.P is equal to twice the m^{th} term.

Answer:
$$T_n = a + (n - 1)d$$

$$T_{m+n} = a + (m + n - 1)d$$
& $T_{m-n} = a + (m - n - 1)d$

$$T_{m+n} + T_{m-n} = a + (m + n - 1)d + a + (m - n - 1)d$$

$$= 2a + d(m + n - 1 + m - n - 1)$$

$$= 2a + d(2m - 2)$$

$$= 2[a + (m - 1)d]$$

$$T_{m+n} + T_{m-n} = 2. T_m$$

2) Find $\sqrt[3]{1001}$ approximately. (two decimal places).

Answer: Given
$$\sqrt[3]{1001} = (1000 + 1)^{\frac{1}{3}} = (1000)^{\frac{1}{3}} \left(1 + \frac{1}{1000}\right)^{\frac{1}{3}}$$

$$= 10^{3 \times \frac{1}{3}} \left[1 + \frac{1}{1000}\right]^{\frac{1}{3}}$$

$$\sqrt[3]{1001} = 10(1 + .001)^{\frac{1}{3}}$$

$$= 10 \left[1 + \frac{.001}{3} + \left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(\frac{.000001}{2}\right)\right] app$$

$$= 10 \left[1 + .00033 - \frac{.000001}{9}\right] app$$

$$= 10 \left[1 .00033 - .00000011\right] app$$

$$= 10 \left[1 .00033\right]$$

$$= 10 \left[1 .00033\right]$$

$$= 10 \left[1 .00033\right]$$

Write the first 6 terms of the sequences whose nth terms are given below and classify them as arithmetic progression, geometric progression, arithmetic geometric progression, harmonic progression and none of them $\frac{(n+1)(n+2)}{(n+3)(n+4)}$

Answer:
$$a_1=\frac{(1+1)(1+2)}{(1+3)(1+4)}=\frac{2(3)}{4(5)}=\frac{6}{20}=\frac{3}{10}$$
 $a_2=\frac{(2+1)(2+2)}{(2+3)(2+4)}=\frac{3(4)}{5(6)}=\frac{12}{30}=\frac{2}{5}$ $a_3=\frac{(3+1)(3+2)}{(3+3)(3+4)}=\frac{4(5)}{6(7)}=\frac{10}{21}$ $a_4=\frac{5(6)}{7(8)}=\frac{15}{28}$ $a_5=\frac{6(7)}{8(9)}=\frac{7}{12}$ $a_6=\frac{7(8)}{9(10)}=\frac{28}{45}$ The sequence is $\frac{3}{10},\frac{2}{5},\frac{10}{21},\frac{15}{28},\frac{7}{12},\frac{28}{45}$

None of A.P, G.P or H.P

4) Write the first 6 terms of the sequences whose nth terms are given below and classify them as arithmetic progression, geometric progression, arithmetic-geometric progression, harmonic progression and none of them $4\left(\frac{1}{2}\right)^n$

Answer: Let
$$a_n = 4\left(\frac{1}{2}\right)^n$$
 $a_1 = 4\left(\frac{1}{2}\right)^1 = \frac{4}{2} = 2$
 $a_{21} = 4\left(\frac{1}{2}\right)^2 = \frac{4}{4} = 1$
 $a_3 = 4\left(\frac{1}{2}\right)^3 = \frac{4}{8} = \frac{1}{2}$
 $a_5 = 4\left(\frac{1}{2}\right)^4 = \frac{4}{32} = \frac{1}{8}$
 $a_6 = 4\left(\frac{1}{2}\right)^5 = \frac{4}{64} = \frac{1}{16}$
the sequence is $2, 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$

$$a = 2$$
; $r = \frac{1}{2}$

It is of the form. a, ar, ar²

It is geometric progression.

5) Write the first 6 terms of the sequences whose nth terms are given below and classify them as arithmetic progression, geometric progression, arithmetic -geometric progression, harmonic progression and none of them $\frac{(-1)^n}{n}$

Answer: Let $a_n = \frac{(-1)^n}{1}$ $a_1 = \frac{(-1)^1}{1} = -1, a_2 = \frac{(-1)^2}{2} = \frac{1}{2}, a_3 = \frac{(-1)^3}{3} = \frac{-1}{3}$ $a_4 = \frac{(-1)^4}{4} = \frac{1}{4}, a_5 = \frac{(-1)^5}{5} = -\frac{1}{5}, a_6 = \frac{(-1)^6}{6} = \frac{1}{6}$ $\therefore \text{ The sequence is } -1, \frac{1}{2}, -\frac{1}{3}, \frac{12}{4}, -\frac{1}{5}, \frac{1}{6}, \dots$ That is $-1, \frac{1}{2}, -\frac{1}{3}, \frac{12}{4}, -\frac{1}{5}, \frac{1}{6}, \dots$

That is
$$-1$$
 $\frac{1}{2}$ $-\frac{1}{2}$ $\frac{12}{2}$ $-\frac{1}{2}$ $\frac{1}{2}$

Consider 1, 2, 3, 4, which is an A.P.

Since d = 2 - 1 = 3 - 2 = 1

and -1, 1, -1,1, ... is a G.P. where

$$r = \frac{1}{-1} = \frac{-1}{1} = -1$$

Hence this is an arithmetico-geometric progression.

6) Write the first 6 terms of the sequences whose nth terms are given below and classify them as arithmetic progression, geometric progression, arithmetic -geometric progression, harmonic progression and none of them $\frac{2n+3}{3n+4}$

Answer: Let
$$a_n = \frac{2n+3}{3n+4}$$

$$a_1 = \frac{2+3}{3+4} = \frac{5}{9}$$

$$a_2 = \frac{4+3}{6+4} = \frac{7}{10}$$

$$a_3 = \frac{6+3}{9+4} = \frac{9}{13}$$

$$a4 = \frac{8+3}{12+4} = \frac{11}{16}$$

$$a_5 = \frac{10+3}{15+4} = \frac{13}{19}$$

$$a_6 = \frac{12+3}{18+4} = \frac{15}{22}$$

$$\frac{5}{9}, \frac{7}{10}, \frac{9}{13}, \frac{11}{16}, \frac{13}{19}, \frac{15}{22} \dots$$
this is neither A.P, G.P nor AGP

7) Write the first 6 terms of the sequences whose nth terms are given below and classify them as arithmetic progression, geometric progression, arithmetic -geometric progression, harmonic progression and none of them 2018

Answer: 2018

Let
$$a_n = 2018$$

then the first 6 terms are 2018, 2018, 2018, 2018, 2018, 2018

It is not an AP, GP, AGP and HP.

8) Write the first 6 terms of the sequences whose nth terms are given below and classify them as arithmetic progression, geometric progression, arithmetic - geometric progression, harmonic progression and none of them $\frac{3n-2}{2n-1}$

Answer: Let
$$a_n = \frac{3n-2}{3^{n-1}}$$
 $a_1 = \frac{1}{30} = 1$
 $a_2 = \frac{3(2)-2}{3^1} = \frac{4}{3}$
 $a_3 = \frac{3(3)-2}{3^2} = \frac{7}{9}$
 $a_4 = \frac{3(4)-2}{3^3} = \frac{10}{27}$
 \therefore The sequence $\frac{1}{1}, \frac{4}{3}, \frac{7}{9}, \frac{10}{27}, \dots$
 $= 1, 4\left(\frac{1}{3}\right), 7\left(\frac{1}{3}\right)^2 + 10\left(\frac{1}{3}\right)^3 + \dots$
 $\therefore 1, 4, 7, 10$ is an A.P and $\left(\frac{1}{3}\right)^0, \left(\frac{1}{3}\right)^1, \left(\frac{1}{3}\right)^2$ g.P

Hence the given sequence is an arithmetics - geometric progression.

Write the first 6 terms of the sequences whose nth term a_n given below

$$a_n = \left\{ egin{array}{lll} n+1 & if & n & is & odd \ n & if & n & is & even \end{array}
ight.$$

Answer:
$$a_n = \left\{ egin{array}{ll} n+1 & if & n & is & odd \ n & if & n & is & even \end{array}
ight.$$

$$a_1 = 1 + 1 = 2$$
, $a_2 = 2$, $a_3 = 3 + 1 = 4$

$$a_4 = 4$$
, $a_5 = 5 + 1 = 6$, $a_6 = 6$

hence the first 6 terms are 4, 2, 2, 4, 6, 6...

Write the first 6 terms of the sequences whose nth term a_n given below $a_n = \begin{cases} n & \text{if } n \text{ is } 1,2 \text{ or } 3 \\ a_{n-1} + a_{n-2} + a_{n-3} & \text{if } n > 3 \end{cases}$

Answer:
$$z_n = \left\{ egin{aligned} n \ a_{n-1} + a_{n-2} + a_{n-3} \end{aligned}
ight.$$

$$a_1 = 1$$
, $a_2 = 2$, $a_3 = 3$

$$a_4 = a_3 + a_2 + a_1 = 3 + 2 + 1 = 6$$

$$a_5 = a_4 + a_3 + a_2 = 6 + 3 + 2 = 11$$

$$a_6 = a_5 + a_4 + a_3 = 11 + 6 + 3 = 20$$

the first 6 terms are 1, 2, 3, 6, 11, 20

Write the nth term of the following sequences 2,2,4,4,6,6

$$\therefore \ a_{n=} \left\{ egin{aligned} n+1 \ 1 \end{aligned}
ight.$$

if n is odd

Write the nth term of the following sequences

$$\frac{1}{2}$$
, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$

Answer: Consider the terms in the numerator 1, 2, 3....

$$a = 1$$
, $d = 2 - 1 = 1$ $a_n = a + (n-1) d$

$$a_n = 1 + (n-1)(1) = 1 + n - 1 = n$$

The terms in the denominator are 2, 3, 4, 5, 6...

here
$$a = 2, d = 1$$

$$a_n = 2 + (n-1) 1 = 2 + n - 1 = n + 1$$

Hence nth term of the given sequence is
$$\frac{n}{n+1}$$

Write the nth term of the following sequences

1 3 5 7 9

$$\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \frac{9}{10}$$

Answer: Numerators are 1, 3, 4, 7, 9

$$a = 1 d = 2 - 1$$

$$a_n = 1 + (n-1)2 = 1 + 2n - 2 = 2n - 1$$

$$a = 2, d = 2$$

$$a_n = 1 + (n-1) 2 = 1 + 2n - 2 = 2n$$

Hence
$$n^{th}$$
 term of the given sequence is $\frac{2n-1}{2n}=1-\frac{1}{2n}$

Write the nth term of the following sequences

Answer: odd terms are 6, 4, 2, 0...

$$t_n = 6 + (n-1)(-2) = 6 - 2n + 2$$

$$= 8 - 2n$$

Even terms are 10, 12, 14, 16

Here
$$a = 1$$
, $d = 2$

$$t_n = 10 + (n - 1)(2) = 10 + 2n - 2$$

$$= 8 + 2n$$

 n^{th} term of the given sequence is $\begin{cases} 8-2n \\ 8+2n \end{cases}$

15) Find the expansion of $(2x + 3)^5$.

> **Answer:** By taking a = 2x, b = 3 and n = 5 in the binomial expansion of $(a + b)^n$ we get $(2x + 3)^5 = (2x)^5 + 5(2x)^4 + 10(2x)^3 + 10(2x)^2 + 10(2x)^3 + 5(2x)^4 + 3^5$

$$= 32x^5 + 240x^4 + 720x^3 + 1080x^2 + 810x + 243.$$

16) Evaluate 98⁴.

Answer: By taking a = 100, b = 2 and n = 4 in the binomial expansion of $(a - b)^n$ we get

$$98^4 = (100-2)^4$$

$$= {}^{4}C_{0}100^{4} - {}^{4}C_{1}100^{3}2 + {}^{4}C_{2}100^{2}2^{2} - {}^{4}C3100^{1}2^{3} + {}^{4}C_{4}100^{0}2^{4}$$

- = 92236816.
- 17) Find the middle term in the expansion of $(x + y)^6$.

Answer: Here n = 6, which is even.

Thus the middle term in the expansion of $(x + y)^6$ is the term containing $x^{\frac{6}{2}}y^{\frac{6}{2}}$, that is the term ${}^6\mathrm{C}_3 \ \mathrm{x}^3\mathrm{y}^3$ which is equal to $20x^3v^3$.

18) Find the middle terms in the expansion of $(x + y)^7$.

Answer: As n = 7 which is odd, the terms containing x^4y^3 and x^3y^4 are the two middle terms.

They are 7C_3 x^4y^3 and ${}^7C_4x^3y^4$ which are equal $35x^4y^3$ and $35x^3y^4$.

19) Find the sum up to n terms of the series : $1 + \frac{6}{7} + \frac{11}{49} + \frac{16}{343} + \dots$

Answer: Here a = 1 d = 5 and $r=rac{1}{7}$ $S_n=rac{a-(a+(n-1)d)r^n}{1-r}+dr\left(rac{1-r^{n-1}}{(1-r)^2}
ight)$

$$=rac{1-(1+5(n-1))(rac{1}{7})^n}{1-rac{1}{7}}+5 imesrac{1}{7}\left(rac{1-\left(rac{1}{7}
ight)^{n-1}}{\left(1-rac{1}{7}
ight)^2}
ight)$$

$$=\frac{1-\frac{5n-4}{7^n}}{\frac{6}{7}}+\frac{\frac{5}{7}(7^{n-1}-1)}{7^{n-1}\left(\frac{6}{7}\right)^2}\Rightarrow\frac{7^n-5n+4}{7^{n-1}6}+\frac{5(7^{n-1}-1)}{7n^{-1}6}$$

20) Write the first 6 terms of the sequences whose nth term an is given below:

$$a_n = \left\{ egin{array}{l} 1 \ 2 & if \ n=1 \ a_{n-1} + a_{n-2} \ if \ n=2, \end{array}
ight.$$

$$if \ n > 3$$

Answer:
$$a_n=\left\{egin{array}{l} 1 \ 2 \ a_{n-1}+a_{n-2}ifn>2 \end{array}
ight.$$

$$a_1 = 1$$
, $a_2 = 2$

$$a_3 = a_2 + a_1 = 2 + 1 = 3$$

$$a_4 = a_3 + a_2 = 3 + 2 = 5$$

$$a_5 = a_4 + a_3 = 5 + 3 = 8$$

$$a_6 = a_5 + a_4 = 8 + 5 = 13$$

hence the first 6 terms are 1, 2, 3, 5, 8, 13

21) Find the sum of first n terms of the series $1^2 + 3^2 + 5^2 + ...$ **Answer:** Given series is $1^2 + 3^2 + 5^2 + ...$

Let Tn be the nth term

 $T_n = (nth term of 1, 3, 5,...)^2$

=
$$[1+(n-1)2]^2$$
 = $(1 + 2n - 2)^2$ = $(2n-1)^2$

$$=4n^2+1-4n$$

:. Sum of n terms =
$$\sum_{n=0}^\infty 4n^2 - 4n + 1 = 4\sum_{n=0}^\infty n^2 - 4\sum_{n=0}^\infty n + n = 4\frac{(n)(n+1)(2n+1)}{6} - \frac{4n(n+1)+n}{2}$$

$$=4\frac{(n)(n+1)(2n+1)}{6}-\frac{4n(n+1)+n}{2}$$

$$= \frac{n}{2} [2(n+1)(n+1) - 6(n+1) + 3]$$

$$=\frac{n(4n^2-1)}{3}$$

22) Find the general term in the expansion of $\left(\frac{4x}{5} - \frac{5}{2x}\right)^9$

Answer: Given
$$\left(\frac{4x}{5} - \frac{5}{2x}\right)^9$$

Here n = 9, x =
$$\frac{4x}{5}$$
 and a = $\left(\frac{-5}{2x}\right)$

$$\therefore T_{r+1} = 9C_rig(rac{4x}{5}ig)^{9-r}ig(rac{-5}{2x}ig)^{r}$$

$$egin{array}{l} 5 & (2a) \ dots & T_{r+1} = 9C_rig(rac{4x}{5}ig)^{9-r}ig(rac{-5}{2x}ig)^r \ & = 9C_r.rac{4^{9-r}}{5^{9-r}}.x^{9-r}(-1)^r.rac{5^r}{2^r.x^r} \ & = (-1)^r 9Crrac{12^{18-3r}}{5^{9-2r}}.rac{5^r}{2^r}.x^{9-2r} \ \end{array}$$

$$= (-1)^r 9 C r rac{12^{18-3r}}{5^{9-2r}} \cdot rac{5^r}{2^r} \cdot x^{9-2r}$$

$$T_{r+1} = (-1)^r 9Cr rac{12^{18-3r}}{5^{9-2r}}.\, x^{9-2r}, 0 \leq r \leq 9.$$

23) Find the middle term in $\left(x-rac{1}{2y}
ight)^{10}$

Answer: Given
$$\left(x-\frac{1}{2y}\right)^{10}$$

Here n = 10, x = x and
$$a = \left(\frac{-1}{2y}\right)$$

Middle term =
$$T_{rac{10+2}{2}}=T_6$$

General term is
$$T_{r+1} = nCrx^{n-r}a^r$$

Putting r = 5 we get,

$$T_6 = 10 C_5 x^{10-5} {\left[-rac{1}{2y}
ight]}^5 = rac{10 imes 9 imes 8 imes 7 imes 6}{5 imes 4 imes 3 imes 2 imes 1}.\, x^5 \left(rac{-1}{32.y^5}
ight) \ = -225.x^5.\, rac{1}{32 y^5} T_6 = rac{-63 x^5}{8 y^5}$$

24) Find the 5th term in the sequence whose first three terms are 3, 3, 6 and each term after the second is the sum of the two terms preceding it.

Answer: Let T_n be the n^{th} term of the sequence

Then, given $T_1 = 3$, $T_2 = 3$, $T_3 = 6$ and

$$T_n = T_{n-1} + T_{n-2}, n > 2$$

$$T_3 = T_2 + T_1 = 3 + 3 = 6$$

$$T_4 = T_3 + T_2 = 6 + 3 = 9$$

$$T_5 = T_4 + T_3 = 9 + 6 = 15.$$

If $x=a+\frac{a}{r}+\frac{a}{r^2}+\ldots+\infty, y=b-\frac{b}{r}+\frac{b}{r^2}+\ldots+\infty$ $z=c+\frac{c}{r^2}+\frac{c}{r^4}+\ldots+\infty$ then show that $\frac{xy}{z}=\frac{ab}{c}$

Answer: Given
$$x = a + \frac{a}{r} + \frac{a}{r^2} + \dots \infty$$

$$=a(1+rac{1}{r}+rac{1}{r^2}+\ldots+\infty)\quad [\because S=rac{a}{1-r}] \ =a(rac{1}{1-rac{1}{r}})=a(rac{r}{r-1})$$

$$\mathbf{v} = \frac{ar}{a} - 1$$

$$x = \frac{ar}{r-1} - (1)$$

$$y = b - \frac{b}{r} + \frac{b}{r^2} \dots b(\frac{1}{1 - (\frac{-1}{r})}) = \frac{b}{1 + \frac{1}{r}}$$

$$y = \frac{br}{r+1} \quad --- (2)$$

$$z = c + \frac{c}{r^2} + \frac{c}{r^4} + \dots = \frac{c}{1 - \frac{1}{r^2}} = \frac{cr^2}{r^2 - 1}$$
 ---- (3)

$$\frac{xy}{z} = \left(\frac{ar}{r-1}, \frac{br}{r+1}\right) / \frac{cr^2}{r^2 - 1} = \frac{abr^2}{r^2 - 1} \times \frac{r^2 - 1}{cr^2} = \frac{ab}{c} \quad [\because \text{ using (1),(2) and (3)}]$$

$$\Rightarrow \frac{xy}{z} = \frac{ab}{c}$$

If a, b, c are in A.P., show that $(a-c)^2 = 4(b^2 - ac)$. 26)

Answer: Given a, b, c are in A.P

$$\Rightarrow b = rac{a+c}{2}$$

RHS = $4[b^2 - ac]$

$$egin{aligned} &=4\left[\left(rac{a+c}{2}
ight)^2-ac
ight]=4\left[\left(rac{a+c}{4}
ight)^2-ac
ight]\ &=4\left[rac{(a+c)^2-4ac}{4}
ight]=a^2+c^2+2ac-4ac \end{aligned}$$

$$= a^2 + c^2 - 2ac$$

$$= (a - c)^2 = LHS$$

Hence proved.

Find the term independent of x in the expansion of $(x^2 + \frac{3}{x})^{15}$.

Answer:
$$T_{11} = {}^{15}C_{10}3^{10}$$

With usual notation find the sum $C_0 + 3C_1 + 5C_2 + ... + (2n + 1)C_n$ where C_r is representing ${}^{n}C_r$.

Find the $\sqrt[3]{126}$ approximately to two decimal places.

Answer:
$$\sqrt[3]{126} = (125)^{1/3} = (125+1)^{1/3} = \left\{125\left(1+\frac{1}{125}\right)\right\}^{1/3} = (125)^{1/3}\left[1+\frac{1}{125}\right]^{1/3} = 5\left[1+\frac{1}{3}\times\frac{1}{125}+\dots\right]\left(\therefore\frac{1}{125}<1\right) = 5\left[1+\frac{1}{3}(0.008)\right] = 5(1+0.002666) = 5.01$$

30) Fidd the coefficient of \mathbf{x}^5 in the expression of $\left(x+\frac{1}{x^3}\right)^{17}$

Answer: Suppose (r + 1)th term contains x^5 in the binomial expansion of $\left(x+\frac{1}{x^3}\right)^{17}$

Now,
$$T_{r+1}={}^{17}C_r(x)^{17-r}\left(rac{1}{x^3}
ight)^r$$

$$={}^{17}C_{r}x^{17-r}x^{-3r}$$

$$={}^{17}C_Tx^{17-4r}$$

This term will contain x^5 , if

$$17 - 4r = 5$$

$$4r = 12$$

$$r=3$$

So
$$(r+1)^{th}$$
. ie) 4^{th} term contains x^5

$$\mathrm{T}_4={}^{17}\mathrm{C}_3x^5$$

The co - efficient of x^5 is ${}^{17}C_3$.