QB365 Question Bank Software Study Materials

Two Dimensional Analytical Geometry 50 Important 1 Marks Questions With Answers (Book Back and Creative)

11th Standard

Maths

Total Marks: 50

Multiple Choice Question

 $50 \times 1 = 50$

1) The equation of the locus of the point whose distance from y-axis is half the distance from origin is

(a) $x^2 + 3y^2 = 0$ (b) $x^2 - 3y^2 = 0$ (c) $3x^2 + y^2 = 0$ (d) $3x^2 - y^2 = 0$

Which of the following equation is the locus of (at², 2at)

(a) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (c) $x^2 + y^2 = a^2$ (d) $y^2 = 4ax$

Which of the following point lie on the locus of $3x^2 + 3y^2 - 8x - 12y + 17 = 0$

(a) (0, 0) (b) (-2, 3) (c) (1, 2) (d) (0, -1)

If the point (8, -5) lies on the locus $\frac{x^2}{16} - \frac{y^2}{25} = k$, then the value of k is

(a) 0 (b) 1 (c) 2 (d) 3

Straight line joining the points (2, 3) and (-1, 4) passes through the point (α, β) if

(a) $\alpha + 2\beta = 7$ (b) $3\alpha + \beta = 9$ (c) $\alpha + 3\beta = 11$ (d) $3\alpha + \beta = 11$

The slope of the line which makes an angle 45° with the line 3x - y = -5 are:

(a) 1, -1 (b) $\frac{1}{2}$, -2 (c) 1, $\frac{1}{2}$ (d) 2, $-\frac{1}{2}$

Equation of the straight line that forms an isosceles triangle with coordinate axes in the I-quadrant with perimeter $4 + 2\sqrt{2}$ is

(a) x + y + 2 = 0 (b) x + y - 2 = 0 (c) $x + y - \sqrt{2} = 0$ (d) $x + y + \sqrt{2} = 0$

The coordinates of the four vertices of a quadrilateral are (-2, 4), (-1, 2), (1, 2) and (2, 4) taken in order. The equation of the line passing through the vertex (-1, 2) and dividing the quadrilateral in the equal areas is

(a) x + 1 = 0 (b) x + y = 1 (c) x + y + 3 = 0 (d) x - y + 3 = 0

The intercepts of the perpendicular bisector of the line segment joining (1, 2) and (3, 4) with coordinate axes are

(a) 5, -5 (b) 5, 5 (c) 5, 3 (d) 5, -4

The equation of the line with slope 2 and the length of the perpendicular from the origin equal to $\sqrt{5}$ is

(a) $x - 2y = \sqrt{5}$ (b) $2x - y = \sqrt{5}$ (c) 2x - y = 5 (d) x - 2y - 5 = 0

A line perpendicular to the line 5x - y = 0 forms a triangle with the coordinate axes. If the area of the triangle is 5 sq. units, then its equation is

(a) $x + 5y \pm 5\sqrt{2} = 0$ (b) $x - 5y \pm 5\sqrt{2} = 0$ (c) $5x + y \pm 5\sqrt{2} = 0$ (d) $5x - y \pm 5\sqrt{2} = 0$

Equation of the straight line perpendicular to the line x - y + 5 = 0, through the point of intersection the y-axis and the given line

(a) x - y - 5 = 0 (b) x + y - 5 = 0 (c) x + y + 5 = 0 (d) x + y + 10 = 0

If the equation of the base opposite to the vertex (2, 3) of an equilateral triangle is x + y = 2, then the length of a side is

(a) $\sqrt{\frac{3}{2}}$ (b) 6 **(c)** $\sqrt{6}$ (d) $3\sqrt{2}$

The line (p + 2q)x + (p - 3q)y = p - q for different values of p and q passes through the point

14)	(a) $\left(\frac{3}{5}, \frac{5}{2}\right)$ (b) $\left(\frac{2}{5}, \frac{2}{5}\right)$ (c) $\left(\frac{3}{5}, \frac{3}{5}\right)$
15)	The point on the line $2x-3y = 5$ is equidistance from $(1, 2)$ and $(3, 4)$ is
	(a) (7, 3) (b) (4, 1) (c) (1, -1) (d) (-2, 3)
16)	The image of the point $(2, 3)$ in the line $y = -x$ is
	(a) (-3, -2) (b) (-3, 2) (c) (-2, -3) (d) (3, 2)
17)	The length of \perp from the origin to the line $\frac{x}{3} - \frac{y}{4} = 1$, is
	(a) $\frac{11}{5}$ (b) $\frac{5}{12}$ (c) $\frac{12}{5}$ (d) $\frac{-5}{12}$
18)	The y-intercept of the straight line passing through $(1, 3)$ and perpendicular to $2x - 3y + 1 = 0$ is
	(a) $\frac{3}{2}$ (b) $\frac{9}{2}$ (c) $\frac{2}{3}$ (d) $\frac{2}{9}$
19)	If the two straight lines $x + (2k - 7)y + 3 = 0$ and $3kx + 9y - 5 = 0$ are perpendicular then the value of k is
	(a) $k = 3$ (b) $k = \frac{1}{3}$ (c) $k = \frac{2}{3}$ (d) $k = \frac{3}{2}$
20)	If a vertex of a square is at the origin and its one side lies along the line $4x + 3y - 20 = 0$, then the area of the square is
	(a) 20 sq. units (b) 16 sq. units (c) 25 sq. units (d) 4 sq.units
21)	If the lines represented by the equations $6x^2 + 41xy - 7y^2 = 0$ make angles α and β with x-axis, then $\tan \alpha \tan \beta = 0$
	(a) $-\frac{6}{7}$ (b) $\frac{6}{7}$ (c) $-\frac{7}{6}$ (d) $\frac{7}{6}$
22)	The area of the triangle formed by the lines x^2 - $4y^2$ = 0 and x = a is
	(a) $2a^2$ (b) $\frac{\sqrt{3}}{2}a^2$ (c) $\frac{1}{2}a^2$ (d) $\frac{2}{\sqrt{3}}a^2$
23)	If one of the lines given by $6x^2$ - xy + $4cy^2$ = 0 is $3x$ + $4y$ = 0, then c equals to
	(a) -3 (b) -1 (c) 3 (d) 1
24)	θ is acute angle between the lines x^2 - xy - $6y^2$ = 0, then $\frac{2\cos\theta+3\sin\theta}{4\sin\theta+5\cos\theta}$ is
	(a) 1 (b) $-\frac{1}{9}$ (c) $\frac{5}{9}$ (d) $\frac{1}{9}$
25)	One of the equation of the lines given by x^2+2xy $cot heta-y^2=0$ is
	(a) $x-y\cot\theta=0$ (b) $x+y\tan\theta=0$ (c) $x\cos\theta+y(\sin\theta+1)=0$ (d) $x\sin\theta+y(\cos\theta+1)=0$
26)	The locus of a point which moves such that it maintains equal distances from two fixed points is a
	(a) straight line (b) line bisector (c) pair of straight lines (d) angle bisector
27)	If the points (a, 0) (0, b) and (x, y) are collinear, then
	(a) $\frac{x}{a} - \frac{y}{b} = 1$ (b) $\frac{x}{a} + \frac{y}{b} = 1$ (c) $\frac{x}{a} + \frac{y}{b} = -1$ (d) $\frac{x}{a} + \frac{y}{b} = 0$
28)	The value of λ for which the lines $3x + 4y = 5$, $5x + 4y = 4$ and $\lambda x + 4y = 6$ meet at a point is
	(a) 2 (b) 1 (c) 4 (d) 3
29)	The distance between the line $12x - 5y + 9 = 0$ and the point (2, 1) is
	(a) $\pm \frac{28}{13}$ (b) $\frac{28}{13}$ (c) $-\frac{28}{13}$ (d) none of these
30)	The lines $x + 2y - 3 = 0$ and $3x - y + 7 = 0$ are
	(a) parallel (b) neither parallel nor perpendicular (c) perpendicular (d) parallel as wellas perpendicular
31)	If the straight line y = mx + c passes through the point (1, 2) and (-2, 4) then the value of m and c are
	(a) $\frac{8}{3}, \frac{-2}{3}$ (b) $\frac{-2}{3}, \frac{8}{3}$ (c) $\frac{2}{3}, \frac{-8}{3}$ (d) $\frac{-2}{3}, \frac{-8}{3}$

32)	The equation of the bisectors of the angle between the co-ordinate axes are
	(a) $x+y=0$ (b) $x-y=0$ (c) $x\pm y=0$ (d) $x=0$
33)	The equation of the straight line bisecting the line segment joining the points (2, 4) and (4, 2) and making an angle of 45° with positive direction of x-axis is
	(a) $x + y = 6$ (b) $x - y = 0$ (c) $x - y = 6$ (d) $x + y = 0$
34)	The length of perpendicular from the origin to a line is 12 and the line makes an angle of 120° with the positive direction of y-axis. then the equation of line is
	(a) $x+y\sqrt{3}=24$ (b) $x+y=12\sqrt{2}$ (c) $x+y=24$ (d) $x+y=12\sqrt{3}$
35)	The lines ax + y + 1 = 0, x + by + 1 = 0 and x + y + c = 0(a \neq b \neq c \neq 1) are concurrent, then the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = \underline{\hspace{1cm}}$
	(a) -1 (b) 1 (c) 0 (d) abc
36)	Which one of the following statements is false?
	(a) The image of a point $(\alpha\beta)$ about x-axis $(\alpha,-\beta)$ (b) The image of the line ax+by+c=0 about x-axis is ax-by+c=0
	(c) The image of a point (α, β) about y-axis $(-\alpha, \beta)$ (d) The image of the line ax+by+c=0 about y-axis is ax-by+c=0
37)	The image of the point (1, 2) with respect to the line y = x is
	(a) (-1, -2) (b) (2, 1) (c) (2, -1) (d) (2, 1)
38)	The condition that the slope of one of the lines represented by $ax^2 + 2hxy + by^2 = 0$ is n times the slope of the other is
	(a) $4nh^2 = ab(1 + n)^2$ (b) $8h^2 = 9ab$ (c) $4n = ab(1 + n)^2$ (d) $4nh^2 = ab$
39)	The equation $3x^2+2hxy+3y^2=0$ represents a pair of straight lines passing through the origin. The two lines are
	(a) real and distinct if $h^2 > 3$ (b) real and distinct if $h^2 > 0$ (c) real and distinct $h^2 > 6$ (d) real and distinct if $h^2 - 9 = 0$
40)	If co-ordinate axes are the angle bisectors of the pair of lines $ax^2 + 2hxy + by^2 = 0$ then
	(a) $a = b$ (b) $h = 0$ (c) $a + b = 0$ (d) $a^2 + b^2 = 0$
41)	The value λ for which the equation $12x^2$ - $10xy$ + $2y^2$ + $11x$ - $5y$ + λ = 0 represent a pair of straight lines is
	(a) $\lambda = 1$ (b) $\lambda = 2$ (c) $\lambda = 3$ (d) $\lambda = 0$
42)	The equation $x^2 + kxy + y^2 - 5x - 7y + 6 = 0$ represents a pair of straight lines then $k = $
	(a) $\frac{5}{3}$ (b) $\frac{10}{3}$ (c) $\frac{3}{2}$ (d) $\frac{3}{10}$
43)	Separate equation of lines for a pair of lines whose equation is $x^2 + xy - 12y^2 = 0$ are
	(a) $x + 4y = 0$ and $x + 3y = 0$ (b) $2x - 3y = 0$ and $x - 4y = 0$ (c) $x - 6y = 0$ and $x - 3y = 0$ (d) $x + 4y = 0$ and $x - 3y = 0$
44)	The distance between the parallel lines $3x - 4y + 9 = 0$ and $6x - 8y - 15 = 0$ is
	(a) $\frac{-33}{10}$ (b) $\frac{10}{33}$ (c) $\frac{33}{10}$ (d) $\frac{33}{20}$
45)	The co-ordinates of a point on $x + y + 3 = 0$ whose distance from $x + 2y + 2 = 0$ is $\sqrt{5}$, is
	(a) (9, 6) (b) (-9, 6) (c) (6, -9) (d) (-9, -6)
46)	If the co-ordinates of a variable point p be $(t+rac{1}{t},t-rac{1}{t})$ where t is the parameter then the locus of p
	(a) $xy = 1$ (b) $x^2 + y^2 = 4$ (c) $x^2 - y^2 = 4$ (d) $x^2 - y^2 = 8$
47)	Find the odd one out of the following:
	(a) (0,5), (0, 7)(-7, 0) (b) (5,0), (-9, 0)(11, 0) (c) (1,1), (-5,-5), (-11,-11) (d) (0, -2), (-7,0), (4, 4)

- If P_1 and P_2 are lengths of the perpendiculars from the origin upon the lines $x \sec \theta + y \csc \theta = a$ and $x \cos \theta y \sin \theta = a \cos 2\theta$ respectively then ______
 - (a) $4P_1^2 + P_2^2 = a^2$ (b) $P_1^2 + 4P_2^2 = a^2$ (c) $P_1^2 + P_2^2 = a^2$ (d) None of these
- The angle between two lines 2x y + 3 = 0 and x + 2y + 3 = 0 is, _____
 - (a) 90 (b) 60 (c) 45 (d) 30