QB365 Question Bank Software Study Materials

Vector Algebra 50 Important 1 Marks Questions With Answers (Book Back and Creative)

11th Standard

Maths

Total Marks: 50

Multiple Choice Question

 $50 \times 1 = 50$

- 1) The value of $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{DA} + \overrightarrow{CD}$ is
 - (a) \overrightarrow{AD} (b) \overrightarrow{CA} (c) $\overrightarrow{0}$ (d) $-\overrightarrow{AD}$
- 2) If $ec{a}+2ec{b}$ and $3ec{a}+mec{b}$ are parallel, then the value of m is
 - (a) 3 (b) $\frac{1}{3}$ (c) 6 (d) $\frac{1}{6}$
- The unit vector parallel to the resultant of the vectors $\hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-2\hat{j}+\hat{k}$ is
 - (a) $\frac{\hat{i} \hat{j} + \hat{k}}{\sqrt{5}}$ (b) $\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$ (c) $\frac{2\hat{i} \hat{j} + \hat{k}}{\sqrt{5}}$ (d) $\frac{2\hat{i} \hat{j}}{\sqrt{5}}$
- A vector \overrightarrow{OP} makes 60° and 45° with the positive direction of the x and y axes respectively. Then the angle between \overrightarrow{OP} and the z-axis is
 - (a) 45° (b) 60° (c) 90° (d) 30°
- If $\overrightarrow{BA}=3\hat{i}+2\hat{j}+\hat{k}$ and the position vector of B is $\hat{i}+3\hat{j}-\hat{k}$,then the position vector of A is
 - (a) $4\hat{i}+2\hat{j}+\hat{k}$ (b) $4\hat{i}+5\hat{j}$ (c) $4\hat{i}$ (d) $-4\hat{i}$
- A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to
 - (a) $cos^{-1}(\frac{1}{3})$ (b) $cos^{-1}(\frac{2}{3})$ (c) $cos^{-1}(\frac{1}{\sqrt{3}})$ (d) $cos^{-1}(\frac{2}{\sqrt{3}})$
- The vectors $ec{a}-ec{b}, ec{b}-ec{c}, ec{c}-ec{a}$ are
 - (a) parallel to each other (b) unit vectors (c) mutually perpendicular vectors (d) coplanar vectors.
- If ABCD is a parallelogram, then $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD}$ is equal to
 - (a) $2(\overrightarrow{AB} + \overrightarrow{AD})$ (b) $4\overrightarrow{AC}$ (c) $4\overrightarrow{BD}$ (d) $\overrightarrow{0}$
- One of the diagonals of parallelogram ABCD with \vec{a} and \vec{b} as adjacent sides is $\vec{a}+\vec{b}$ The other diagonal \overrightarrow{BD} is
 - (a) $\vec{a} = \vec{b}$ (b) $\vec{b} = \vec{a}$ (c) $\vec{a} + \vec{b}$ (d) $\frac{\vec{a} + \vec{b}}{2}$
- If \vec{a} , \vec{b} are the position vectors A and B, then which one of the following points whose position vector lies on AB, is
 - (a) $\vec{a}+\vec{b}$ (b) $\frac{2\vec{a}-\vec{b}}{2}$ (c) $\frac{2\vec{a}+\vec{b}}{3}$ (d) $\frac{\vec{a}-\vec{b}}{3}$
- If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of three collinear points, then which of the following is true?
 - (a) $\vec{a}=\vec{b}+\vec{c}$ (b) $2\vec{a}=\vec{b}+\vec{c}$ (c) $\vec{b}=\vec{c}+\vec{a}$ (d) $4\vec{a}+\vec{b}+\vec{c}=0$
- If $\vec{r} = \frac{9\vec{a} + 7\vec{b}}{16}$, then the point P whose position vector \vec{r} divides the line joining the points with position vectors \vec{a} and \vec{b} in the ratio
 - (a) 7: 9 internally (b) 9: 7 internally (c) 9: 7 externally (d) 7: 9 externally
- If $\lambda \hat{i} + 2\lambda \hat{j} + 2\lambda \hat{k}$ is a unit vector, then the value of λ is

```
(a) \frac{1}{3} (b) \frac{1}{4} (c) \frac{1}{9} (d) \frac{1}{2}
         Two vertices of a triangle have position vectors 3\hat{i}+4\hat{j}-4\hat{k} and 2\hat{i}+3\hat{j}+4\hat{k}. If the position vector of the centroid is \hat{i}+2\hat{j}+3\hat{k}, then the position vector of the third vertex is
14)
         (a) -2\hat{i} - \hat{j} + 9\hat{k} (b) -2\hat{i} - \hat{j} - 6\hat{k} (c) 2\hat{i} - \hat{j} + 6\hat{k} (d) -2\hat{i} + \hat{j} + 6\hat{k}
         If |ec{a}+ec{b}|=60, |ec{a}-ec{b}|=40\, and |ec{b}|=46\,, then |ec{a}| is
         (a) 42 (b) 12 (c) 22 (d) 32
16)
         (a) 2 (b) 3 (c) 7 (d) 1
```

If
$$\vec{a}$$
 and \vec{b} having same magnitude and angle between them is 60° and their scalar product is $\frac{1}{2}$ then $|\vec{a}|$ is

The value of
$$\theta \in (0, \frac{\pi}{2})$$
 for which the vectors $\vec{a} = (sin\theta)\hat{i} + (cos\theta)\hat{j}$ and $\vec{b} = \hat{i} - \sqrt{3}\hat{j} + 2\hat{k}$ are perpendicular, is equal to (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$

If
$$|\vec{a}|=13, |\vec{b}|=5$$
 and $\vec{a}.\,\vec{b}=60^o$ then $|\vec{a}\times\vec{b}|$ is (a) 15 (b) 35 (c) 45 (d) 25

Vectors
$$\vec{a}$$
 and \vec{b} are inclined at an angle $\theta=120^o$. If $|\vec{a}|=1, |\vec{b}|=2$, then $[(\vec{a}+3\vec{b})\times(3\vec{a}-\vec{b})]^2$ is equal to (a) 225 (b) 275 (c) 325 (d) 300

If
$$\vec{a}$$
 and \vec{b} are two vectors of magnitude 2 and inclined at an angle 60°, then the angle between \vec{a} and $\vec{a} + \vec{b}$ is (a) 30° (b) 60° (c) 45° (d) 90°

If the projection of
$$\hat{5}\hat{i} - \hat{j} - 3\hat{k}$$
 on the vector $\hat{i} + 3\hat{j} + \lambda\hat{k}$ is same as the projection of $\hat{i} + 3\hat{j} + \lambda\hat{k}$ on $5\hat{i} - \hat{j} - 3\hat{k}$, then λ is equal to

(a)
$$\pm 4$$
 (b) ± 3 (c) ± 5 (d) ± 1

(a) 6 (b) 3 (c) 5 (d) 8

(a) 5 (b) 7 (c) 26 (d) 10

If
$$(1, 2, 4)$$
 and $(2, -3\lambda, -3)$ are the initial and terminal points of the vector $\hat{i} + 5\hat{j} - 7\hat{k}$, then the value of λ is equal to (a) $\frac{7}{3}$ (b) $-\frac{7}{3}$ (c) $-\frac{5}{3}$ (d) $\frac{5}{3}$

If
$$ec{a}=\hat{i}+\hat{j}+\hat{k}, ec{b}=2\hat{i}+x\hat{j}+\hat{k}, ec{c}=\hat{i}-\hat{j}+4\hat{k}$$
 and $ec{a}.$ $(ec{b} imesec{c})=70,$ then x is equal to

If
$$\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$$
, $|\vec{b}| = 5$ and the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then the area of the triangle formed by these two vectors as two sides, is

(a)
$$\frac{7}{4}$$
 (b) $\frac{15}{4}$ (c) $\frac{3}{4}$ (d) $\frac{17}{4}$

The vectors from origin to the points A and B are
$$2\hat{i}-3\hat{j}+2\hat{k}$$
 and $2\hat{i}+3\hat{j}+\hat{k}$ respectively, then the area of Δ OAB is equal to (a) 340 (b) 5 (c) $\sqrt{229}$ (d) $\frac{1}{2}\sqrt{229}$

The projection of
$$\vec{b}$$
 on \vec{a} is _______.

(a) $\left(\frac{\vec{a}.\vec{b}}{|\vec{b}|}\right)\vec{b}$ (b) $\frac{\vec{a}.\vec{b}}{|\vec{b}|}$ (c) $\frac{\vec{a}.\vec{b}}{|\vec{a}|}$ (d) $\left(\frac{\vec{a}.\vec{b}}{|\vec{a}|}\right)$

The number of vectors of unit length perpendicular to the vectors
$$\vec{a}=\hat{i}+\hat{j}+\hat{k}$$
 and $\vec{b}=2\hat{i}+\hat{j}+6\hat{k}$ is ______.

²³⁾ If the points whose position vectors $10\hat{i}+3\hat{j},12\hat{i}-5\hat{j}$ and $a\hat{i}+11\hat{j}$ are collinear then a is equal to

If $|ec{a}|=|ec{b}|$ then

(a) $\vec{a} = \vec{b}$ (b) $\vec{a} = \overrightarrow{-b}$ (c) $\vec{a} = \pm \vec{b}$ (d) both are null vectors

31) If $|ec{a}|$ =4 and $-3 \leq \lambda \leq 2$ then the range of $|\lambda ec{a}|$ is ______ .

(a) [0, 8] (b) [-12, 8] (c) [0, 12] (d) [8, 12]

32) The vector in the direction of the $\mathrm{vector}\,\hat{i}-2\hat{j}+2\hat{k}$ that has magnitude 9 is ______ .

(a) $\hat{i}-2\hat{j}+2\hat{k}$ (b) $\frac{\hat{i}-2\hat{j}+2\hat{k}}{3}$ (c) $3(\hat{i}-2\hat{j}+2\hat{k})$ (d) $9(\hat{i}-2\hat{j}+2\hat{k})$

33) If the direction cosines of a line are k, k and k, then

(a) k > 0 (b) 0 (c) k=1 (d) $k = \frac{1}{\sqrt{3}} or - \frac{1}{\sqrt{3}}$

34) The direction cosines of the vector $2\hat{i}+2\hat{j}-\hat{k}$ are ______

(a) $\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}$ (b) $\frac{2}{3}, \frac{2}{3}, \frac{1}{3}$ (c) $-\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}$ (d) $-\frac{2}{3}, -\frac{2}{3}, -\frac{1}{3}$

The angle between two vectors $ec{a}$ and $ec{b}$ with magnitudes $\sqrt{3}$ and 4 respectively and $ec{a}$. $ec{b}=2\sqrt{3}$ is ______. 35)

(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ (d) $\frac{5\pi}{2}$

36) The value of λ when the vectors $ec{a}=2ec{i}+\lambdaec{j}+ec{k}$ and $\ ec{b}=ec{i}+2ec{j}+3ec{k}$ are orthogonal is _______.

(a) 0 (b) 1 (c) $\frac{3}{2}$ (d) $-\frac{5}{2}$

If m $\left(ec{2} + ec{j} + ec{k}
ight)$ is a unit vector then the value of m is ______ .

(a) $\pm \frac{1}{\sqrt{3}}$ (b) $\pm \frac{1}{\sqrt{5}}$ (c) $\pm \frac{1}{\sqrt{6}}$ (d) $\pm \frac{1}{2}$

38) Match List - I with List II

	LIST I		LIST II
1	\hat{i} . \hat{i}	а	О
2	\hat{i} . \hat{j}	b	\hat{k}
3	$\hat{i} imes \hat{i}$	С	1
4	$\hat{i} imes \hat{j}$	d	0

The Correct match is

(a) i iiiiiiiv i iiiiiiv i iiiiiiv

39)

Assertion (A): If ABCD is a parallelogram, $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD}$ then is equal zero. Reason (R): \overrightarrow{AB} and \overrightarrow{CD} are equal in magnitude and opposite in direction. Also \overrightarrow{AD} and \overrightarrow{CB} are equal in magnitude and opposite in direction

(a) Both A and R are true and R is the correct explanation of A

(b) Both A and R are true and R is not a correct explantion of A (c) A is true but R is false (d) A is false but R is true

40) Let $\vec{a}\vec{b}$ and \vec{c} be the three vectors having magnitudes 1, 5 and 3 respectively, such that the angle between \vec{a} and \vec{b} is 0 and \vec{a}

(a) 0 (b) $\frac{2}{3}$ (c) $\frac{3}{5}$ (d) $\frac{3}{4}$

41) $\text{If } \vec{a} \text{ and } \vec{b} \text{ are two vectors, such that } \vec{a} \cdot \vec{b} < 0 \text{ and } |\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|, \text{ then the angle between vectors } \vec{a} \text{ and } \vec{b} \text{ is } \underline{\hspace{1cm}} .$

(a) π (b) $7\pi/4$ (c) $\pi/4$ (d) $3\pi/4$

42) If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} \cdot \vec{b} = 0 = \vec{a} \cdot \vec{c}$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$. Then the value of $|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}|$ is

(a) 1/2 (b) 1 (c) 2 (d) None of these

- Trmentinnent sides of a parallelogram ABCD are $2\hat{i}+4\hat{j}-5\hat{k}$ and $\hat{i}+2\hat{j}+3\hat{k}$. Then the value of $|\overrightarrow{AC}\times\overrightarrow{BD}|$ is _____
 - (a) $20\sqrt{5}$ (b) $22\sqrt{5}$ (c) $24\sqrt{5}$ (d) $26\sqrt{5}$
- 44) $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}; \vec{r} \times \vec{b} = \vec{a} \times \vec{b}; \vec{a} \neq 0; \vec{b} \neq 0; \vec{a} \neq \lambda b; \vec{a} \text{ is not perpendicular to } \vec{b} \text{ Then } \vec{r} \text{ is equal to }$
 - (a) $ec{a} + ec{b}$ (b) $ec{a} ec{b}$ (c) $ec{a} imes ec{b} + ec{a}$ (d) $ec{a} imes ec{b} + ec{b}$
- If $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ where \vec{a}, \vec{b} and \vec{c} are non-coplanar, then
 - (a) \vec{r} Perpendicular $(\vec{c} imes \vec{a})$ (b) \vec{r} Perpendicular $(\vec{a} imes \vec{b})$ (c) \vec{r} Perpendicular $(\vec{b} imes \vec{c})$ (d) $\vec{r} = \vec{0}$
- If vectors \vec{a} and \vec{b} are two adjacent sides of a parallelogram, then the vectors representing the altitude of the parallelogram

 (a) $\vec{b} + \frac{\vec{b} \times \vec{a}}{|\vec{a}|^2}$ (b) $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}$ (c) $\vec{b} \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a}$ (d) $\frac{\vec{a} \times (\vec{b} \times \vec{a})}{|\vec{b}|^2}$
- A parallelogram is constructed on $3\vec{a} + \vec{b}$ and $\vec{a} 4\vec{b}$, where $|\vec{a}| = 6$ and $|\vec{b}| = 8$ and \vec{a} and \vec{b} are anti-parallel. Then the lengtl (a) 40 (b) 64 (c) 32 (d) 48
- If $\vec{a} \cdot \vec{b} = 0$ where \vec{a} and \vec{b} are unit vectors and the unit vector \vec{c} is inclined at the angle θ to both \vec{a} and \vec{b} . If $\vec{c} = m\dot{a} + n\vec{b} + I$ (a) $\frac{-\pi}{4} \le \theta \le \frac{\pi}{4}$ (b) $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$ (c) $0 \le \theta \le \frac{\pi}{4}$ (d) $0 \le \theta \le \frac{3\pi}{4}$
- If \vec{a} satisfies $\vec{a} \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} \hat{k}$ then \vec{a} is equal to

 (a) $\lambda \hat{i} + (2\lambda 1)\hat{j} + \lambda \hat{k}, \lambda \in R$ (b) $\lambda \hat{i} + (1 2\lambda)\hat{j} + \lambda \hat{k}, \lambda \in R$ (c) $\lambda \hat{i} + (2\lambda + 1)\hat{j} + \lambda \hat{k}, \lambda \in R$ (d) $\lambda \hat{i} + (2 + 2\lambda)\hat{j} + \lambda \hat{k}, \lambda \in R$
- $ec{a}, ec{b} ext{ and } ec{c} ext{ are the three vectors of equal magnitude.}$ The angle between each pair of vectors is $rac{\pi}{3}$ such that $|ec{a} + ec{b} + ec{c}| = \sqrt{6}$.
 - (a) 2 (b) -1 (c) 1 (d) $\frac{\sqrt{6}}{3}$