QB365 Question Bank Software Study Materials

Algebra 50 Important 1 Marks Questions With Answers (Book Back and Creative)

10th Standard

Maths

Total Marks: 50

Multiple Choice Question

 $50 \times 1 = 50$

- A system of three linear equations in three variables is inconsistent if their planes
 - (a) intersect only at a point (b) intersect in a line (c) coincides with each other (d) do not intersect
- 2) The solution of the system x + y 3z = -6, -7y + 7z = 7, 3z = 9 is

(a)
$$x = 1$$
, $y = 2$, $z = 3$ (b) $x = -1$, $y = 2$, $z = 3$ (c) $x = -1$, $y = -2$, $z = 3$ (d) $x = 1$, $y = -2$, $z = 3$

- If (x 6) is the HCF of $x^2 2x 24$ and $x^2 kx 6$ then the value of k is
 - (a) 3 (b) 5 (c) 6 (d) 8
- 4) $\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is
 - (a) $\frac{9y}{7}$ (b) $\frac{9y^2}{(21y-21)}$ (c) $\frac{21y^2-42y+21}{3y^2}$ (d) $\frac{7(y^2-2y+1)}{y^2}$
- 5) $y^2 + \frac{1}{u^2}$ is not equal to

(a)
$$\frac{y^2+1}{y^2}$$
 (b) $\left(y+\frac{1}{y}\right)^2$ (c) $\left(y-\frac{1}{y}\right)^2+2$ (d) $\left(y+\frac{1}{y}\right)^2-2$

6) $\frac{x}{x^2-25} - \frac{8}{x^2+6x+5}$ gives

(a)
$$\frac{x^2-7x+40}{(x-5)(x+5)}$$
 (b) $\frac{x^2+7x+40}{(x-5)(x+5)(x+1)}$ (c) $\frac{x^2-7x+40}{(x^2-25)(x+1)}$ (d) $\frac{x^2+10}{(x^2-25)(x+1)}$

The square root of $\frac{256x^8y^4z^{10}}{25x^6y^6z^6}$ is equal to

(a)
$$\frac{16}{5} \left| \frac{x^2 z^4}{y^2} \right|$$
 (b) $16 \left| \frac{y^2}{x^2 z^4} \right|$ (c) $\frac{16}{5} \left| \frac{y}{x z^2} \right|$ (d) $\frac{16}{5} \left| \frac{x z^2}{y} \right|$

- Which of the following should be added to make $x^4 + 64$ a perfect square
 - (a) $4x^2$ (b) $16x^2$ (c) $8x^2$ (d) $-8x^2$
- The solution of $(2x 1)^2 = 9$ is equal to
 - (a) -1 (b) 2 (c) -1, 2 (d) None of these
- The values of a and b if $4x^4 24x^3 + 76x^2 + ax + b$ is a perfect square are
 - (a) 100, 120 (b) 10, 12 (c) -120, 100 (d) 12, 10
- If the roots of the equation $q^2x^2 + p^2x + r^2 = 0$ are the squares of the roots of the equation $qx^2 + px + r = 0$, then q, p, r are in .
 - (a) A.P (b) G.P (c) Both A.P and G.P (d) none of these
- 12) Graph of a linear equation is a _____
 - (a) straight line (b) circle (c) parabola (d) hyperbola
- The number of points of intersection of the quadratic polynomial $x^2 + 4x + 4$ with the X axis is
 - (a) 0 **(b) 1** (c) 0 or 1 (d) 2
- $\begin{pmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 2 \end{pmatrix}$

- 15) If A is a 2 x 3 matrix and B is a 3 x 4 matrix, how many columns does AB have
 - (a) 3 (b) 4 (c) 2 (d) 5
- 16) If number of columns and rows are not equal in a matrix then it is said to be a
 - (a) diagonal matrix (b) rectangular matrix (c) square matrix (d) identity matrix
- 17) Transpose of a column matrix is
 - (a) unit matrix (b) diagonal matrix (c) column matrix (d) row matrix
- 18) Find the matrix X if 2X + $\begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 5 & 7 \\ 9 & 5 \end{pmatrix}$
 - (a) $\begin{pmatrix} -2 & -2 \\ 2 & -1 \end{pmatrix}$ (b) $\begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}$
- 19) Which of the following can be calculated from the given matrices $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$,
 - (i) A^2
 - (ii) B^2
 - (iii) AB
 - (iv) BA
 - (a) (i) and (ii) only (b) (ii) and (iii) only (c) (ii) and (iv) only (d) all of these
- If $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 1 \\ -2 & 5 \end{pmatrix}$, Which of the following statements are correct? 20)

 - (i) AB + C = $\begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}$ (ii) BC = $\begin{pmatrix} 0 & 1 \\ 2 & -3 \\ -4 & 10 \end{pmatrix}$
 - (iii) BA + C = $\begin{pmatrix} 2 & 5 \\ 3 & 0 \end{pmatrix}$
 - (iv) (AB)C = $\begin{pmatrix} -8 & 20 \\ -8 & 13 \end{pmatrix}$
 - (a) (i) and (ii) only (b) (ii) and (iii) only (c) (iii) and (iv) only (d) all of these
- 21) $\frac{x^2 + 7x12}{x^2 + 8x + 15} \times \frac{x^2 + 5x}{x^2 + 6x + 8} = \underline{\hspace{1cm}}$
 - (a) x+2 (b) $\frac{x}{x+2}$ (c) $\frac{35x^2+60x}{48x^2+120}$ (d) $\frac{1}{x+2}$
- The product of the sum and product of roots of equation $(a^2-b^2)x^2-(a+b)^2x+(a^3-b^3)=0$ is
 - (a) $\frac{a^2 + ab + b^2}{(a b)}$ (b) $\frac{a b}{a + b}$ (c) $\frac{a b}{a + b}$ (d) $\frac{a b}{a^2 + ab + b^2}$
- If $2A+3B=\begin{bmatrix}2&-1&4\\3&2&5\end{bmatrix}$ and $A+2B=\begin{bmatrix}5&0&3\\1&6&2\end{bmatrix}$ then B = [hint: B = (A+2B)-(2+3B)]
 - (a) $\begin{bmatrix} 8 & -1 & -2 \\ -1 & 10 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} 8 & -1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} 8 & 1 & 2 \\ -1 & 10 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 8 & 1 & 2 \\ 1 & 10 & 1 \end{bmatrix}$
- If $A=\begin{bmatrix}1&2\\3&4\\5&6\end{bmatrix}_{3 imes2}$ $B=\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}_{2 imes3}$ then which of the following products can be made from these matrices
 - (i) A²
 - (ii) B^2

- (iii) AB
- (iv) BA
- (a) (i) only (b) (ii) and (iii) only (c) (iii) and (iv) only (d) all the above
- If α and β are the roots of $ax^2 + bx + c = 0$ then one of the quadratic equations whose roots are $1/\alpha$ and $1/\beta$ is ______
 - (a) $ax^2 + bx + c = 0$ (b) $bx^2 + ax + c = 0$ (c) $cx^2 + bx + a = 0$ (d) $cx^2 + ax + b = 0$
- 26) The value of x in (x + 2) + 2(x 1) = 4x 3
 - (a) 2 **(b) 3** (c) -2 (d) -3
- 27) solve for $x: (x-\frac{1}{2})^2 (x-\frac{3}{2})^2 = x+2$
 - (a) 4 (b) 8 (c) -4 (d) -8
- What should be the value of P if 3x + 2y = 8 and 6x + 4y = 9 have infinitely many solutions?
 - (a) 3 **(b) 16** (c) 5 (d) 6
- 29) If the Sum of two numbers is 640 and their difference is 280, then the numbers are ______
 - (a) 140, 500 **(b) 180, 460** (c) 130, 510 (d) 150, 490
- The total salary of 15 men and 8 women in Rs 3050. The difference of salaries of 5 women and 3 men is Rs 50. Find the sum of the salaries of 3 men and 5 women
 - (a) Rs 900 (b) Rs 850 (c) Rs 950 (d) Rs 1000
- If the GCD and LCM of two expressions are x + 2 and $(x + 2)^2$ (x 2) respectively, then the two expressions are ______
 - (a) (x + 2), (x 2) (b) $(x + 2)^2, (x^2 4)$ (c) $(x + 2), (x^2 4)$ (d) $(x + 2)^2, (x 2)$
- The GCD and LCM of a and b are 27 and 2079 respectively. If a is divided by 9, the quotient is 21. Then b is ______
 - (a) 243 (b) 189 (c) 113 (d) 297
- 33) The LCM of $x^2 3ax + 2a^2$, $x^2 4ax + 4a^2$ and $x^2 ax 2a^2$ is
 - (a) $(x-2a)^2(x^2-a^2)$ (b) $(x-a)^2(x-2a)$ (c) (x-a)(x-2a)(x-3a) (d) $(x-2a)^3$
- Simplest form of $\frac{a^2-b^2}{a^2-3ab+2b^2}$ is _____
 - (a) $\frac{(a+b)^2}{a-2b}$ (b) $\frac{a+b}{a-2b}$ (c) $\frac{a-b}{a-2b}$ (d) $\frac{a+b}{a+2b}$
- 35) Simplest form of $\frac{x^7 + 2x^6 + x^5}{x^3(x+1)^8}$ is
 - (a) $\frac{x^2}{(x^6+1)}$ (b) $\frac{x^2}{(x+1)^6}$ (c) $\frac{x^3}{x+1}$ (d) $\frac{x^4}{x+2}$
- 36) $\frac{x^2-5x-14}{x^2-3x+2} \times \frac{x^2-4}{x^2-14x+49} =$ _____
 - (a) $\frac{x+2}{x+7}$ (b) $\frac{(x+2)^2}{x-7}$ (c) $\frac{(x+2)^2}{(x-1)(x-7)}$ (d) $\frac{x-2}{(x-1)(x-7)}$
- Simplify $\frac{(y^2+5y+4)}{\left(\frac{y^2-1}{y+5}\right)}$
 - (a) $\frac{y-1}{y-4}$ (b) $\frac{y+5}{y-1}$ (c) $\frac{(y+4)(y+3)}{y-1}$ (d) $\frac{y^2+9y+20}{y-1}$
- 38) Excluded values of $\frac{2x+1}{x^2-x-6}$ are
 - (a) 1, -2 (b) -2, 3 (c) 2, -3 (d) 2, 3
- Which of the following is a quadratic equation?
 - (a) $x^{1/2} + 2x + 3 = 0$ (b) $(x 1)(x + 4) = x^2 + 1$ (c) $x^2 3x + 5 = 0$ (d) $(2x + 1)(3x 4) = 6x^2 + 3$
- The Quadratic equation whose roots $\frac{p}{q}$, $\frac{-q}{p}$ is _____

(a) $qx^2 - (q^2 + p^2)x - pq = 0$ (b) $pqx^2 - (p^2 - q^2)x - pq = 0$ (c) $px^2 - (p^2 + 1)x + p = 0$

(d) $p^2x^2 - (p^2 - q^2)x - pq = 0$

The condition for $px^2 + qx + r = 0$ to be a pure quadratic equation is then the second root is ______

(a) p = 0 (b) q = 0 (c) r = 0 (d) p = q = 0

42) If the discriminant of $3x^2 - 14x + k = 0$ is 100, then $k = ____$

(a) 8 (b) 32 (c) 16 (d) 24

The roots of the equation $x^2 + kx + 12 = 0$ will differ by unity only when _____

(a) $k=\pm\sqrt{12}$ (b) $k=\pm\sqrt{48}$ (c) $k=\pm\sqrt{47}$ (d) $k=\pm\sqrt{49}$

If α , β are the roots of the equation x^2+k x+12=0, such that $\alpha-\beta=1$, then the value of k______

(a) 0 (b) ± 5 (c) ± 1 (d) ± 7

45) If $\mathbf{A} = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$ and $\mathbf{A}^2 = \mathbf{I}$, then $\mathbf{x} =$

(a) 0 (b) 1 (c) -1 (d) 2

If $\mathbf{A} \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$ and $\mathbf{A}^2 = \mathbf{k}\mathbf{A}$, then $\mathbf{k} =$

(a) 4 (b) 5 (c) 6 (d) 7

 $\text{If } \mathbf{A} + \mathbf{B} = \begin{bmatrix} 10 & 8 \\ 8 & 4 \end{bmatrix} \text{ and } \mathbf{A} - \mathbf{B} = \begin{bmatrix} 2 & -4 \\ 0 & 6 \end{bmatrix}, \text{ then } \mathbf{A} =$

(a) $\begin{bmatrix} 6 & 2 \\ 4 & 5 \end{bmatrix}$ (b) $\begin{bmatrix} 6 & 2 \\ 4 & 6 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & 6 \\ 4 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$

 $\text{If } \mathbf{A} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } \mathrm{f}(\mathbf{x}) = \mathrm{x}^2 - 5\mathbf{x} + 4\mathbf{I}, \text{ then } \mathrm{f}(\mathbf{A}) =$

(a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix}$

If order of A,B,C are 3×4 , 5×4 and 5×8 , then the order of (AB^TC) is

(a) 8×3 (b) 3×8 (c) 3×4 (d) 4×5

If $ax^2 + bx + c = 0$ has equal roots, then C is equal _____.

(a) $\frac{b^2}{2a}$ (b) $\frac{b^2}{4a}$ (c) $\frac{-b^2}{2a}$ (d) $\frac{-b^2}{4a}$