QB365 Question Bank Software Study Materials

Numbers and Sequences 50 Important 1 Marks Questions With Answers (Book Back and Creative)

10th Standard

Maths

Total Marks: 50

Multiple Choice Question

 $50 \times 1 = 50$

- Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r such that a = bq + r, where r must satisfy
 - (a) 1 < r < b (b) 0 < r < b (c) $0 \le r < b$ (d) $0 < r \le b$
- 2) Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are
 - (a) 0, 1, 8 (b) 1, 4, 8 (c) 0, 1, 3 (d) 0, 1, 3
- If the HCF of 65 and 117 is expressible in the form of 65m 117, then the value of m is
 - (a) 4 (b) 2 (c) 1 (d) 3
- The sum of the exponents of the prime factors in the prime factorization of 1729 is
 - (a) 1 (b) 2 (c) 3 (d) 4
- The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
 - (a) 2025 (b) 5220 (c) 5025 (d) **2520**
- 6) $7^{4k} \equiv \underline{\hspace{1cm}} \pmod{100}$
 - (a) 1 (b) 2 (c) 3 (d) 4
- Given $F_1 = 1$, $F_2 = 3$ and $F_n = F_{n-1} + F_{n-2}$ then F_5 is
 - (a) 3 (b) 5 (c) 8 (d) 11
- The first term of an arithmetic progression is unity and the common difference is 4. Which of the following will be a term of this A.P.
 - (a) 4551 (b) 10091 (c) **7881** (d) 13531
- 9) If 6 times of 6th term of an A.P. is equal to 7 times the 7th term, then the 13th term of the A.P. is
 - (a) 0 (b) 6 (c) 7 (d) 13
- An A.P. consists of 31 terms. If its 16th term is m, then the sum of all the terms of this A.P. is
 - (a) 16 m (b) 62 m (c) 31 m (d) $\frac{31}{2}$ m
- In an A.P., the first term is 1 and the common difference is 4. How many terms of the A.P. must be taken for their sum to be equal to 120?
 - (a) 6 (b) 7 (c) 8 (d) 9
- 12) If $A = 2^{65}$ and $B = 2^{64} + 2^{63} + 2^{62} + ... + 2^{0}$ Which of the following is true?
 - (a) B is 2⁶⁴ more than A (b) A and B are equal (c) B is larger than A by 1 (d) A is larger than B by 1
- 13) The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \dots$ is
 - (a) $\frac{1}{24}$ (b) $\frac{1}{27}$ (c) $\frac{2}{3}$ (d) $\frac{1}{81}$
- If the sequence t_1 , t_2 , t_3 ... are in A.P. then the sequence t_6 , t_{12} , t_{18} ,... is
 - (a) a Geometric Progression (h) an Arithmetic Progression

	(a) a deconicule i rogression (b) an Attennecie Frogression
	(c) neither an Arithmetic Progression nor a Geometric Progression (d) a constant sequence
15)	The value of $(1^3 + 2^3 + 3^3 + + 15^3)$ - $(1 + 2 + 3 + + 15)$ is
	(a) 14400 (b) 14200 (c) 14280 (d) 14520
16)	-74 = (mod 7)
	(a) 4 (b) 3 (c) -4 (d) 1
17)	If t_n is the n^{th} term of A.P, then $t_{2n-}t_n$ is
	(a) 2nd (b) nd (c) a+nd (d) 2a+2nd
18)	A sequence is a function defined on the set of
	(a) real numbers (b) natural numbers (c) whole numbers (d) integers
19)	If m and n are the two positive integers then m ² and n ² are
	(a) Co-prime (b) Not co-prime (c) Even (d) odd
20)	If 3 is the least prime factor of number and 7 is least prime factor of b, then the least prime factor a + b is
	(a) a + b (b) 2 (c) 5 (d) 10
21)	The difference between the remainders when 6002 and 601 are divided by 6 is
	(a) 2 (b) 1 (c) 0 (d) 3
22)	In the arithemetic series $Sn = k + 2k + 3k + + 100$, k is positive integer and k is a factor 100 then S_n is
	(a) $1000\frac{10}{k}$ (b) $5000\frac{50}{k}$ (c) $\frac{1000}{k}+10$ (d) $\frac{5000}{k}+50$
23)	How many terms are there in the G.P: 5, 20, 80, 320,, 20480
	(a) 5 (b) 6 (c) 7 (d) 9
24)	Sum of infinite terms of G.P is 12 and the first term is 8. What is the fourth term of the G.P?
	(a) $\frac{8}{27}$ (b) $\frac{4}{27}$ (c) $\frac{8}{20}$ (d) $\frac{1}{3}$
25)	The sum of first n terms of the series a, 3a, 5ais
	(a) na (b) $(2n-1)a$ (c) n^2-a (d) n^2a^2
26)	If p, q, r, x, y, z are in A.P, then 5p + 3, 5r + 3, 5x + 3, 5y + 3, 5z + 3 form
	(a) a G.P (b) an A.P (c) a constant sequence (d) neither an A.P nor a G.P
27)	In an A.P if the p th term is q and the q th term is p, then its n th term is
	(a) p+q-n (b) p+q+n (c) p-q+n (d) p-q-n
28)	Sum of first n terms of the series $\sqrt{2}+\sqrt{8}+\sqrt{18}+\dots$ is
	(a) $\frac{n(n+1)}{2}$ (b) \sqrt{n} (c) $\frac{n(n+1)}{\sqrt{2}}$ (d) 1
29)	HCF of two equal positive integers k, k is
	(a) k (b) 1 (c) 0 (d) none of the above
30)	Euclid's division lemma cail be used to find the of any two positive integers
	(a) HCF (b) Multiples (c) Both (d) None of these
31)	Euclid's division lemma is not applicable for which values of b?
	(a) Positive integer (b) Zero (c) Negative integer (d) All of these

<i>3</i> _)	Using Euclid's division lemma HCF of 455 and 42 canbe expressed as
	(a) $455 = 42 \times 9 + 77$ (b) $455 = 42 \times 10 + 35$ (c) $455 = 42 \times 11 - 7$ (d) $455 = 42 \times 12 - 49$
33)	The number 132 is to be written as product of its prime factors. Which of the following is correct?
	(a) $132 = 2 \times 6 \times 11$ (b) $132 = 2^2 \times 3 \times 11$ (c) $132 = 2^2 \times 3^2 \times 5$ (d) $132 = 3 \times 4 \times 11$
34)	$25 + 37 \equiv \underline{\qquad} \pmod{12}$
	(a) 2 (b) 3 (c) 1 (d) 62
35)	What does 144 reduces to mod 11?
	(a) 144 (b) 1 (c) 2 (d) 143
36)	First term and common difference in the sequence 7, 10, 13,
	(a) 1, 7 (b) 7, 10 (c) 7, 3 (d) 13, 10
37)	The common differences of the A.P. $\frac{1}{3}$, $\frac{1-3b}{3}$, $\frac{1-6b}{3}$,is
	(a) $\frac{1}{3}$ (b) $\frac{-1}{3}$ (c) - b (d) b
38)	The sum of n terms of an A.P. is $3n^2 + 5n$, then which of its term is 164?
	(a) 26 th (b) 27 th (c) 28 th (d) None of these
39)	The first, second and last term of an A.P. are a, b and 2a respectively, its sum is
	(a) $\frac{ab}{2(b-a)}$ (b) $\frac{ab}{b-a}$ (c) $\frac{3ab}{2(b-a)}$ (d) None of these
40)	7 th term of a G.P. 2, 6, 18 is
	(a) 5832 (b) 2919 (c) 1458 (d) 729
41)	The sequence -3, -3, -3 is
	(a) an A. Ponly (b) a G.Ponly (c) neither A.P nor G.P (d) both A.P and G.P
42)	Sum of n terms of a G.P. is
	(a) $\frac{n}{2}[2a+(n-1)d]$ (b) $\frac{a(1-r^n)}{1-r}$ (c) $\frac{2ab}{(a+b)}$ (d) $\frac{a+b}{2}$
43)	$\frac{5+9+13+\dots \text{ ton terms}}{7+9+11+\dots \text{ to } (n+1) \text{ terms}} = \frac{17}{16} \text{ then n} = ?$
	(a) 8 (b) 7 (c) 10 (d) 11
44)	The sum of first n odd natural number is
	(a) $2n-1$ (b) $2n+1$ (c) n^2 (d) n^2-1
45)	$1^2 + 2^2 + 3^2 \dots + n^2 = ?$
	(a) $\left[\frac{n(n+1)}{2}\right]^2$ (b) $\frac{n(n+1)}{2}$ (c) n^2 (d) $\frac{n(n+1)(2n+1)}{6}$
46)	If 2 + 4 + 6 + 2k = 90, then the value of k is
	(a) 8 (b) 9 (c) 10 (d) 11
47)	Statement I - A sequence can be considered as a function defined on the set of natural numbers. Statement II - Though all the sequences are functions, not all the functions are sequences.
	(a) Statement I is true and Statement II is false (b) Statement I is false and Statement II is true
	(c) Both the statements are true (d) Both the statements are false.

The Value of r_1 such that $1 + r + r^2 + r^3 + ___ = 3/4$

- (a) 1/3 (b) -1/3 (c) 3 (d) -3
- If two positive integers a and b are written as $a = x^3y^2$ and $b = xy^3$, where x, y are prime numbers, then the result obtained by dividing the product of the positive integers by the LCM (a, b) is
 - (a) xy (b) xy^2 (c) x^3y^3 (d) x^2y^2
- Two APs have the same common difference. The first term of one of these is -1 and that of the other is 8. The difference between their 4th terms is
 - (a) 1 (b) -7 (c) 7 (d) 9