QB365 Question Bank Software Study Materials

Numbers and Sequences Important 2 Marks Questions With Answers (Book Back and Creative)

10th Standard

Maths

Total Marks : 60

<u>2 Marks</u>

 $30 \ge 2 = 60$

1) Prove that square of any integer leaves the remainder either 0 or 1 when divided by 4.

Answer : All the integers 'a' must be either even or odd. If it is even then a = 2q. If it is odd then a = 2q + 1Case 1: If a = 2q $a^2 = (2q)^2$ $a^2 = 4q^2$, remainder 0 when divided by 4. Case 2: If a = 2q+1 $a^2 = (2q+2)^2$ $= 4q^2 + 4q + 1$ = 4q (q + 1) + 1 $a^2 = 4m + 1$ Where m = q (q + 1) is an integer It is of the form bq + 1 where 1 is the remainder when divided by 4. The square of any integer leaves the remainder either 0 or 1 when divided by 4.

2) In the given factorisation, find the numbers m and n.

Answer: Value of the first box from bottom = $5 \ge 2 = 10$ Value of n = $5 \ge 10 = 50$ Value of the second box from bottom = $3 \ge 50 = 150$ Value of m = $2 \ge 150 = 300$ Thus, the required numbers are m = 300, n = 50

Answer : $15 \equiv 3 \pmod{d}$ means 15 - 3 = kd, for some integer k,

12 = kd

gives d divides 12.

The divisors of 12 are 1,2,3,4,6,12. But d should be larger than 3 and so the possible values for d are 4, 6, 12.

4) Find the next three terms of the following sequence.

8, 24, 72, ...

Answer: 8, 24, 72, 8 24 72 216 648 1944 × 3 × 3 × 3 × 3 × 3 × 3

Each term is obtained by multiplying the previous term by 3.

Next three terms are 216, 648, 1944.

5) Find the nth term of the following sequences,
2, 5, 10, 17,....,

Answer : 2, 5, 10, 17,...., = 1² + 1, 2² + 1, 3² + 1, 4² + 1 ...

Here the every term is obtained by adding 1 to its square The general term $a_n = n^2 + 1$

6) Find the number of terms in the A.P. 3, 6, 9, 12,..., 111.

Answer : First term a = 3; common difference d = 6 - 3 = 3 ; last term 1 = 111 We know that, n = $\left(\frac{l-a}{d}\right) + 1$ n = $\left(\frac{111-3}{3}\right) + 1 = 37$ Thus the A.P. contain 37 terms

7) Find the 8^{th} term of the G.P 9,3,1,....

Answer : The find the 8th term we have use the nth term formula tn = arⁿ⁻¹ First term a = 9, common radio r = $\frac{t_2}{t_1} = \frac{3}{9} = \frac{1}{3}$ $t_8 = 9 \times (\frac{1}{3})^{8-1} = 9 \times (\frac{1}{3})^7 = \frac{1}{243}$ Therefore the 8th term of the G.P is $\frac{1}{243}$

8)

¹ If a, b, c are in A.P. then show that 3^a, 3^b, 3^c are in G.P

Answer: Given a, b, c are in A.P

 $t_2 - t_1 = t_3 - t_2$ b - a = c - b b + b = c + a 2b = c + a

If we multiply both the sides by same number value will not change

 $3^{2b} = 3^{a+c}$

 $3^{b + b} = 3^{a+c}$ $3^{b} \cdot 3^{b} = 3^{a} \cdot 3^{c}$

$$rac{3^b}{3^a}=rac{3^c}{3^b}$$

Thus 3^{a} , 3^{b} , 3^{c} are in G.P.

9)

11)

Find the first term of a G.P. in which $S_6 = 4095$ and r = 4

Answer : Common ratio = 4 > 1, sum of first 6 terms $S_6 = 4095$ Hence , $S_6 = \frac{a(r^n - 1)}{r - 1} = 4095$ Since, $r = 4, \frac{a(4^6 - 1)}{4 - 1} = 4095$ gives a x $\frac{4095}{3} = 4095$ First term a = 3.

10) Find the sum 3 + 1+ $\frac{1}{3}$ + ∞

Answer : Here a = 3,
$$r = \frac{t_2}{t_1} = \frac{1}{3}$$

Sum of infinite terms = $\frac{a}{1-r} = \frac{3}{1-\frac{1}{3}} = \frac{9}{2}$

If the first term of an infinite G.P. is 8 and its sum to infinity is $\frac{32}{3}$ then find the common ratio

Answer : First term a = 8

$$S_{\infty}= \cdot rac{32}{3}$$

Sum upto infinity of a G.P.,

$$S_{\infty} = \frac{a}{1-r}$$

$$\frac{32}{3} = \frac{8}{1-r}$$

$$32(1 - r) = 24$$

$$1 - r = \frac{24}{32}$$

$$1 - r = \frac{3}{4}$$

$$1 - \frac{3}{4} = r$$

$$\frac{1}{4} = r$$
Common ratio $r = \frac{1}{4}$

¹²⁾ Find the quotient and remainder when a is divided by b in the following a = 17 b = -3

Answer: a = 17 b = -3By Euclid's division lemma a = bq + r, Where $0 \le r < |b|$ $17 = (-3) \ge (-5) + 2 \ 0 \le r < |-3|$ Therefore Quotient q = -5Remainder r = 2

13) Find the least positive value of x such that $5x \equiv 4 \pmod{6}$

Answer: $5x \equiv 4 \pmod{6}$ $5x - 4 \equiv 6n$ for some integer n.

5x - 4 is a multiple of 6.

x = 2 is the least positive x.

14) Find the next three terms of the sequences.1, 0.1, 0.01,...

Answer: 1, 0.1, 0.01, ... $\div 10$ $\div 10$

Here each term is divided by 10. Hence , the next three terms are

$$egin{aligned} a_4 &= rac{0.01}{10} = 0.001 \ a_5 &= rac{0.001}{10} = 0.0001 \ a_6 &= rac{0.0001}{10} = 0.00001 \end{aligned}$$

¹⁵⁾ Find the first four terms of the sequences whose nth terms are given by $a_n = 2n^2 - 6$

Answer: $a_n = 2n^2 - 6$ nth term is given by $a_n = 2n^2 - 6$ First term $a_1 = 2(1)^2 - 6 = -4$ Second term $a_2 = 2(2)^2 - 6 = 2$ Third term $a_3 = 2(3)^2 - 6 = 12$ Fourth term $a_4 = 2(4)^2 - 6 = 26$ ∴ The first four terms are -4, 2, 12, 26, ...

16) Check whether the following sequences are in A.P. or not ?

2, 4, 8, 16,.....

Answer : $t_2 - t_1 = 4 - 2 = 2$ $t_3 - t_2 = 8 - 4 = 4$ $t_2 - t_1 \neq t_3 - t_2$

Thus, the differences between consecutive terms are not equal. Hence the terms of the sequence 2, 4, 8, 16, . . . are not in A.P.

17) Check whether the following sequences are in A.P.9, 13, 17, 21, 25,...,

Answer: 9,13,17, 21, 25, ... $t_2 - t_1 = 13 - 9 = 4$ $t_3 - t_2 = 17 - 13 = 4$ $t_4 - t_3 = 21 - 17 = 4$ $t_5 - t_4 = 25 - 21 = 4$ $t_2 - t_1 = t_3 - t_2 = t_4 - t_3 = t_5 - t_4 = 4$ The difference between consecutive terms are equal.

18) Check whether the following sequences are in A.P. $\frac{-1}{3}, 0, \frac{1}{3}, \frac{2}{3}, .$

Answer: $t_2 - t_1 = 0 - \left(\frac{-1}{3}\right) = \frac{1}{3}$ $t_3 - t_2 = \frac{1}{3} - 0 = \frac{1}{3}$ $t_4 - t_3 = \frac{2}{3} - \frac{1}{3} = \frac{2-1}{3} = \frac{1}{3}$ $t_2 - t_1 = t_3 - t_2 = t_4 - t_3 = \frac{1}{3}$ The differences between consecutive terms are equal.

 $\therefore \frac{-1}{3}, 0, \frac{1}{3}, \frac{2}{3}, \dots$ are in A P

¹⁹⁾ Which of the following sequences form a Geometric Progression?

5, 25, 50, 75

Answer: 5, 25, 50, 75,...., $\frac{t_2}{t_1} = \frac{25}{5} = 5; \frac{t_3}{t_2} = \frac{50}{25} = 2; \frac{t_4}{t_3} = \frac{75}{50} = \frac{3}{2}$ Since the ratios between successive terms are not equal, the sequence 5, 25, 50, 75,... is not a Geometric Progression.

²⁰⁾ Find the geometric progression whose first term and common ratios are given by

a = 256, r = 0.5

Answer : The general form of Geometric progression is a, ar, ar^2 ,... a = 256, ar = 256 x 0.5 = 128, $ar^2 = 256 x (0.5)^2 = 64$ Therefore the required Geometric progression is 256,128, 64,....

21) Which of the following sequences are in G.P.?

 $\frac{1}{3}, \frac{1}{6}, \frac{1}{12},$

Answer:
$$\frac{t_2}{t_1} = \frac{1/6}{1/3} = \frac{1}{6} \times \frac{3}{1} = \frac{1}{2}$$

 $\frac{t_3}{t_2} = \frac{1/12}{1/6} = \frac{1}{12} \times \frac{6}{1} = \frac{1}{2}$

The ratios between successive terms are equal $\frac{1}{3}, \frac{1}{6}, \frac{1}{12}$ are in G.P.

22) Find the sum of

1 + 3 + 5 +..+ 55

Answer: 1 + 3 + 5 +...+ 55

Here the number of terms is not given.

Now we have to find the number of terms using the formula, $n = \frac{(l-a)}{d} + 1$ gives $n = \frac{(55-1)}{2} + 1 = 28$ Therefore, $1 + 3 + 5 + ... + 55 = (28)^2 = 784$

23) Is 1 a prime number ?

Answer: No, 1 is not a prime number.

Because the definition of a prime number is "a positive integer that has exactly two positive divisors (1 and itself) is a prime number". But 1 has only one positive divisor 1 itself. So it is not a prime.

24) What is the sum of first n even natural numbers?

Answer : Sum of n numbers $S_n = \frac{n}{2}[2a + (n-1)d]$ Let the first n even natural numbers be 2, 4, 6, 8, ... upto n terms. a = 2; d = 4 - 2 = 2

$$egin{aligned} \mathrm{S_n} &= rac{n}{2} [2(2) + (n-1)(2)] \ &= rac{n}{2} [4+2n-2] = rac{n}{2} [2n+2] \ &= rac{n}{2} imes 2(n+1) = n(n+1) \end{aligned}$$

Sum of first n even natural numbers = n (n + 1)

25) Split 64 into three parts such that the numbers are in G.P

```
Answer : Let the three numbers be ar<sup>n-1</sup>, a, ar
Let a = 4 and r = 4
The three numbers are 1,4,16
```

```
<sup>26)</sup> Find the H.C.F. and L.C.M of 100 and 190 by fundamental theorem of arithmetic
```

Answer : By fundamental theorem we have every composite number can be expressed as a product of primes

Factorizing 100 and 190

 $2\frac{100}{2} \frac{100}{50} \frac{2}{5} \frac{190}{95} \frac{190}{95}$ $100 = 2^{2} \times 5^{2}$ $190 = 2^{1} \times 5^{1} \times 19^{1}$ $\therefore HCF \text{ of } 100 \text{ and } 190 = 2^{1} \times 5^{1} = 10$ $H.C.F. \times L.C.M. = \text{Product of two numbers}$ $10 \times L.C.M. = 100 \times 190$ $L.C.M. = \frac{100 \times 190}{10} = 1900$

²⁷⁾ Does 7 divides $(2^{29} + 3)$?

Answer: We have

$$egin{aligned} 2^3 &\equiv 1 \pmod{7} \ ig(2^3ig)^8 &\equiv 1^8 \pmod{7} \ 2^3 2^{24} &\equiv 1 imes 1^8 \pmod{7} \ 2^{27} &\equiv 1 \pmod{7} \ 2^2 2^{27} &\equiv 4 imes 1 (1 \mod 7) \ 2^{29} &\equiv 4 \pmod{7} \ 2^{29} &+ 3 &\equiv (4+3) \pmod{7} \ 2^{29} &+ 3 &\equiv 0 \pmod{7} \ 2^{2$$

28) Find the first three terms of $a_n = \frac{2n-3}{6}$

Answer: Given
$$a_n = \frac{2n-3}{6}$$

 $\therefore a_1 = \frac{2(1)-3}{6} = \frac{2-3}{6} = \frac{-1}{6}$
 $a_2 = \frac{2(2)-3}{6} = \frac{4-3}{6} = \frac{1}{6}$
 $a_3 = \frac{2(3)-3}{6} = \frac{6-3}{6} = \frac{3}{6}$
 \therefore First three terms are $\frac{-1}{6}, \frac{1}{6}, \frac{3}{6}$.

29) Which term of the sequence $20, 19\frac{1}{4}, 18\frac{1}{2}, 17\frac{3}{4}, \ldots$ is the first negative term?

Answer: $t_2 - t_1 = 19\frac{1}{4} - 20 = -\frac{3}{4}$ $t_3 - t_2 = 18\frac{1}{2} - 19\frac{1}{4} = -\frac{3}{4}$ $t_2 - t_1 = t_3 - t_2$ \therefore The sequence is an A.P. with $a = 20; d = -\frac{3}{4}$ Let the nth term of A.P. be the first negative term. i.e., $t_n < 0$ a + (n-1)d < 0 $20 + (n-1) \times (\frac{-3}{4}) < 0$ $(n-1)(-\frac{3}{4}) < -20$ $(n-1)(\frac{3}{4}) > 20$ $n-1 > \frac{20}{(\frac{3}{2})}$

$$(rac{1}{4})$$

 $n-1>20 imesrac{4}{3}$
 $n>rac{80}{3}+1$
 $n>rac{80+3}{3}=rac{83}{3}$
 $n>27rac{2}{3}$
 $n\geq 28\quad [\because n ext{ is a natural number }]$
 $\therefore ext{ If } n\geq 28, ext{ the terms } t_n ext{ becomes negative.}$
 $\therefore 28^{ ext{th}} ext{ term is the first negative term.}$

30) Find the sum of infinity of the G.P $\frac{-3}{4}, \frac{3}{16}, \frac{-3}{64}, \dots$

Answer: Here
$$a = \frac{-3}{4}, r = \frac{-1}{4}$$

Sum $= \frac{a}{1-r} = \frac{-\frac{3}{4}}{1-(\frac{-1}{4})}$
Sum $= \frac{\frac{-3}{4}}{\frac{5}{4}} = \frac{-3}{5}$